DrainageDensity: Calculate drainage density from topography#
- class DrainageDensity(*args, **kwds)[source]#
Bases:
Component
Calculate drainage density over a DEM.
Landlab component that implements the distance to channel algorithm of Tucker et al., 2001.
This component requires EITHER a
channel__mask array
with 1’s where channels exist and 0’s elsewhere, OR a set of coefficients and exponents for a slope-area relationship and a channelization threshold to compare against that relationship.If an array is provided it MUST be of type
np.uint8
. See the example below for how to make such an array.The
channel__mask
array will be assigned to an at-node field with the namechannel__mask
. If the channel__mask was originaly created from a passed array, a user can update this array to change the mask.If the
channel__mask
is created using an area coefficent, slope coefficient, area exponent, slope exponent, and channelization threshold, the location of the mask will be re-update when calculate_drainage_density is called.If an area coefficient, \(C_A\), a slope coefficent, \(C_S\), an area exponent, \(m_r\), a slope exponent, \(n_r\), and channelization threshold \(T_C\) are provided, nodes that meet the criteria
\[C_A A^{m_r} C_s S^{n_r} > T_c\]where \(A\) is the drainage density and \(S\) is the local slope, will be marked as channel nodes.
The
calculate_drainage_density
function returns drainage density for the model domain. This function calculates the distance from every node to the nearest channel node \(L\) along the flow line of steepest descent (assuming D8 routing).This component stores this distance a field, called:
surface_to_channel__minimum_distance
. The drainage density is then calculated (after Tucker et al., 2001):\[D_d = \frac{1}{2\overline{L}}\]where \(\overline{L}\) is the mean L for the model domain.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator, FastscapeEroder >>> mg = RasterModelGrid((10, 10)) >>> _ = mg.add_zeros('node', 'topographic__elevation') >>> np.random.seed(50) >>> noise = np.random.rand(100) >>> mg.at_node['topographic__elevation'] += noise >>> mg.at_node['topographic__elevation'] array([ 0.49460165, 0.2280831 , 0.25547392, 0.39632991, 0.3773151 , 0.99657423, 0.4081972 , 0.77189399, 0.76053669, 0.31000935, 0.3465412 , 0.35176482, 0.14546686, 0.97266468, 0.90917844, 0.5599571 , 0.31359075, 0.88820004, 0.67457307, 0.39108745, 0.50718412, 0.5241035 , 0.92800093, 0.57137307, 0.66833757, 0.05225869, 0.3270573 , 0.05640164, 0.17982769, 0.92593317, 0.93801522, 0.71409271, 0.73268761, 0.46174768, 0.93132927, 0.40642024, 0.68320577, 0.64991587, 0.59876518, 0.22203939, 0.68235717, 0.8780563 , 0.79671726, 0.43200225, 0.91787822, 0.78183368, 0.72575028, 0.12485469, 0.91630845, 0.38771099, 0.29492955, 0.61673141, 0.46784623, 0.25533891, 0.83899589, 0.1786192 , 0.22711417, 0.65987645, 0.47911625, 0.07344734, 0.13896007, 0.11230718, 0.47778497, 0.54029623, 0.95807105, 0.58379231, 0.52666409, 0.92226269, 0.91925702, 0.25200886, 0.68263261, 0.96427612, 0.22696165, 0.7160172 , 0.79776011, 0.9367512 , 0.8537225 , 0.42154581, 0.00543987, 0.03486533, 0.01390537, 0.58890993, 0.3829931 , 0.11481895, 0.86445401, 0.82165703, 0.73749168, 0.84034417, 0.4015291 , 0.74862 , 0.55962945, 0.61323757, 0.29810165, 0.60237917, 0.42567684, 0.53854438, 0.48672986, 0.49989164, 0.91745948, 0.26287702]) >>> fr = FlowAccumulator(mg, flow_director='D8') >>> fsc = FastscapeEroder(mg, K_sp=.01, m_sp=.5, n_sp=1) >>> for x in range(100): ... fr.run_one_step() ... fsc.run_one_step(dt = 10.0) ... mg.at_node['topographic__elevation'][mg.core_nodes] += .01 >>> channels = np.array(mg.at_node['drainage_area'] > 5, dtype=np.uint8) >>> dd = DrainageDensity(mg, channel__mask=channels) >>> mean_drainage_density = dd.calculate_drainage_density() >>> np.isclose(mean_drainage_density, 0.3831100571) True
Alternatively you can pass a set of coefficients to identify the channel mask. Next shows the same example as above, but with these coefficients provided.
>>> mg = RasterModelGrid((10, 10)) >>> _ = mg.add_zeros('node', 'topographic__elevation') >>> np.random.seed(50) >>> noise = np.random.rand(100) >>> mg.at_node['topographic__elevation'] += noise >>> fr = FlowAccumulator(mg, flow_director='D8') >>> fsc = FastscapeEroder(mg, K_sp=.01, m_sp=.5, n_sp=1) >>> for x in range(100): ... fr.run_one_step() ... fsc.run_one_step(dt = 10.0) ... mg.at_node['topographic__elevation'][mg.core_nodes] += .01 >>> channels = np.array(mg.at_node['drainage_area'] > 5, dtype=np.uint8) >>> dd = DrainageDensity(mg, ... area_coefficient=1.0, ... slope_coefficient=1.0, ... area_exponent=1.0, ... slope_exponent=0.0, ... channelization_threshold=5) >>> mean_drainage_density = dd.calculate_drainage_density() >>> np.isclose(mean_drainage_density, 0.3831100571) True
References
Required Software Citation(s) Specific to this Component
None Listed
Additional References
Tucker, G., Catani, F., Rinaldo, A., Bras, R. (2001). Statistical analysis of drainage density from digital terrain data. Geomorphology 36(3-4), 187-202. https://dx.doi.org/10.1016/s0169-555x(00)00056-8
Initialize the DrainageDensity component.
- Parameters:
grid (ModelGrid) –
channel__mask (Array that holds 1's where) – channels exist and 0’s elsewhere
area_coefficient (coefficient to multiply drainage area by,) – for calculating channelization threshold
slope_coefficient (coefficient to multiply slope by,) – for calculating channelization threshold
area_exponent (exponent to raise drainage area to,) – for calculating channelization threshold
slope_exponent (exponent to raise slope to,) – for calculating channelization threshold
channelization_threshold (threshold value above) – which channels exist
- __init__(grid, channel__mask=None, area_coefficient=None, slope_coefficient=None, area_exponent=None, slope_exponent=None, channelization_threshold=None)[source]#
Initialize the DrainageDensity component.
- Parameters:
grid (ModelGrid) –
channel__mask (Array that holds 1's where) – channels exist and 0’s elsewhere
area_coefficient (coefficient to multiply drainage area by,) – for calculating channelization threshold
slope_coefficient (coefficient to multiply slope by,) – for calculating channelization threshold
area_exponent (exponent to raise drainage area to,) – for calculating channelization threshold
slope_exponent (exponent to raise slope to,) – for calculating channelization threshold
channelization_threshold (threshold value above) – which channels exist
- calculate_drainage_density()[source]#
Calculate drainage density.
If the channel mask is defined based on slope and area coefficients, it will be update based on the current drainage area and slope fields.
- Returns:
landscape_drainage_density – Drainage density over the model domain.
- Return type:
float (1/m)