Source code for landlab.components.gravel_bedrock_eroder.gravel_bedrock_eroder

#!/usr/bin/env python3
"""
Model bedrock incision and gravel transport and abrasion in a network of rivers.

@author: gtucker
"""

import numpy as np

from landlab import Component
from landlab import HexModelGrid
from landlab.grid.diagonals import DiagonalsMixIn

_DT_MAX = 1.0e-2
_ONE_SIXTH = 1.0 / 6.0
_SEVEN_SIXTHS = 7.0 / 6.0


[docs] class GravelBedrockEroder(Component): """Drainage network evolution of rivers with gravel alluvium overlying bedrock. Model drainage network evolution for a network of rivers that have a layer of gravel alluvium overlying bedrock. :class:`~.GravelBedrockEroder` is designed to operate together with a flow-routing component such as :class:`~.FlowAccumulator`, so that each grid node has a defined flow direction toward one of its neighbor nodes. Each core node is assumed to contain one outgoing fluvial channel, and (depending on the drainage structure) zero, one, or more incoming channels. These channels are treated as effectively sub-grid-scale features that are embedded in valleys that have a width of one grid cell. As with the :class:`~.GravelRiverTransporter` component, the rate of gravel transport out of a given node is calculated as the product of bankfull discharge, channel gradient (to the 7/6 power), a dimensionless transport coefficient, and an intermittency factor that represents the fraction of time that bankfull flow occurs. The derivation of the transport law is given by Wickert & Schildgen (2019), and it derives from the assumption that channels are gravel-bedded and that they "instantaneously" adjust their width such that bankfull bed shear stress is just slightly higher than the threshold for grain motion. The substrate is assumed to consist entirely of gravel-size material with a given bulk porosity. The component calculates the loss of gravel-sized material to abrasion (i.e., conversion to finer sediment, which is not explicitly tracked) as a function of the volumetric transport rate, an abrasion coefficient with units of inverse length, and the local transport distance (for example, if a grid node is carrying a gravel load ``Qs`` to a neighboring node ``dx`` meters downstream, the rate of gravel loss in volume per time per area at the node will be ``beta * Qs * dx``, where ``beta`` is the abrasion coefficient). Sediment mass conservation is calculated across each entire grid cell. For example, if a cell has surface area ``A``, a total volume influx ``Qin``, and downstream transport rate ``Qs``, the resulting rate of change of alluvium thickness will be ``(Qin - Qs / (A * (1 - phi))``, plus gravel produced by plucking erosion of bedrock (``phi`` is porosity). Bedrock is eroded by a combination of abrasion and plucking. Abrasion per unit channel length is calculated as the product of volumetric sediment discharge and an abrasion coefficient. Sediment produced by abrasion is assumed to go into wash load that is removed from the model domain. Plucking is calculated using a discharge-slope expression, and a user-defined fraction of plucked material is added to the coarse alluvium. Parameters ---------- grid : ModelGrid A Landlab model grid object intermittency_factor : float (default 0.01) Fraction of time that bankfull flow occurs transport_coefficient : float (default 0.041) Dimensionless transport efficiency factor (see Wickert & Schildgen 2019) abrasion_coefficient : float (default 0.0 1/m) Abrasion coefficient with units of inverse length sediment_porosity : float (default 0.35) Bulk porosity of bed sediment depth_decay_scale : float (default 1.0) Scale for depth decay in bedrock exposure function plucking_coefficient : float or (n_core_nodes,) array of float (default 1.0e-4 1/m) Rate coefficient for bedrock erosion by plucking coarse_fraction_from_plucking : float or (n_core_nodes,) array of float (default 1.0) Fraction of plucked material that becomes part of gravel sediment load Examples -------- >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> grid = RasterModelGrid((3, 3), xy_spacing=1000.0) >>> elev = grid.add_zeros("topographic__elevation", at="node") >>> sed = grid.add_zeros("soil__depth", at="node") >>> sed[4] = 300.0 >>> grid.status_at_node[grid.perimeter_nodes] = grid.BC_NODE_IS_CLOSED >>> grid.status_at_node[5] = grid.BC_NODE_IS_FIXED_VALUE >>> fa = FlowAccumulator(grid, runoff_rate=10.0) >>> fa.run_one_step() >>> eroder = GravelBedrockEroder(grid, abrasion_coefficient=0.0005) >>> rock_elev = grid.at_node["bedrock__elevation"] >>> for _ in range(200): ... rock_elev[grid.core_nodes] += 1.0 ... elev[grid.core_nodes] += 1.0 ... fa.run_one_step() ... eroder.run_one_step(10000.0) ... >>> int(elev[4] * 100) 2266 """ _name = "GravelBedrockEroder" _unit_agnostic = True _info = { "bedload_sediment__rate_of_loss_to_abrasion": { "dtype": float, "intent": "out", "optional": False, "units": "m/y", "mapping": "node", "doc": "Rate of bedload sediment volume loss to abrasion per unit area", }, "bedload_sediment__volume_influx": { "dtype": float, "intent": "out", "optional": False, "units": "m**3/y", "mapping": "node", "doc": "Volumetric incoming streamwise bedload sediment transport rate", }, "bedload_sediment__volume_outflux": { "dtype": float, "intent": "out", "optional": False, "units": "m**3/y", "mapping": "node", "doc": "Volumetric outgoing streamwise bedload sediment transport rate", }, "bedrock__abrasion_rate": { "dtype": float, "intent": "out", "optional": False, "units": "m/y", "mapping": "node", "doc": "rate of bedrock lowering by abrasion", }, "bedrock__elevation": { "dtype": float, "intent": "out", "optional": False, "units": "m", "mapping": "node", "doc": "elevation of the bedrock surface", }, "bedrock__exposure_fraction": { "dtype": float, "intent": "out", "optional": False, "units": "-", "mapping": "node", "doc": "fractional exposure of bedrock", }, "bedrock__plucking_rate": { "dtype": float, "intent": "out", "optional": False, "units": "m/y", "mapping": "node", "doc": "rate of bedrock lowering by plucking", }, "bedrock__lowering_rate": { "dtype": float, "intent": "out", "optional": False, "units": "m/y", "mapping": "node", "doc": "Rate of lowering of bedrock surface", }, "flow__link_to_receiver_node": { "dtype": int, "intent": "in", "optional": False, "units": "-", "mapping": "node", "doc": "ID of link downstream of each node, which carries the discharge", }, "flow__receiver_node": { "dtype": int, "intent": "in", "optional": False, "units": "-", "mapping": "node", "doc": "Node array of receivers (node that receives flow from current node)", }, "flow__upstream_node_order": { "dtype": int, "intent": "in", "optional": False, "units": "-", "mapping": "node", "doc": "Node array containing downstream-to-upstream ordered list of node IDs", }, "sediment__rate_of_change": { "dtype": float, "intent": "out", "optional": False, "units": "m/y", "mapping": "node", "doc": "Time rate of change of sediment thickness", }, "soil__depth": { "dtype": float, "intent": "in", "optional": False, "units": "m", "mapping": "node", "doc": "Depth of soil or weathered bedrock", }, "surface_water__discharge": { "dtype": float, "intent": "in", "optional": False, "units": "m**3/y", "mapping": "node", "doc": "Volumetric discharge of surface water", }, "topographic__elevation": { "dtype": float, "intent": "inout", "optional": False, "units": "m", "mapping": "node", "doc": "Land surface topographic elevation", }, "topographic__steepest_slope": { "dtype": float, "intent": "in", "optional": False, "units": "-", "mapping": "node", "doc": "The steepest *downhill* slope", }, }
[docs] def __init__( self, grid, intermittency_factor=0.01, transport_coefficient=0.041, abrasion_coefficient=0.0, sediment_porosity=0.35, depth_decay_scale=1.0, plucking_coefficient=1.0e-4, coarse_fraction_from_plucking=1.0, ): """Initialize GravelBedrockEroder.""" super().__init__(grid) # Parameters self._trans_coef = transport_coefficient self._intermittency_factor = intermittency_factor self._abrasion_coef = abrasion_coefficient self._porosity_factor = 1.0 / (1.0 - sediment_porosity) self._depth_decay_scale = depth_decay_scale if ( isinstance(plucking_coefficient, np.ndarray) and len(plucking_coefficient) == self.grid.number_of_nodes ): plucking_coefficient = plucking_coefficient[self.grid.core_nodes] self._plucking_coef = plucking_coefficient if ( isinstance(coarse_fraction_from_plucking, np.ndarray) and len(coarse_fraction_from_plucking) == self.grid.number_of_nodes ): coarse_fraction_from_plucking = coarse_fraction_from_plucking[ self.grid.core_nodes ] self._pluck_coarse_frac = coarse_fraction_from_plucking # Fields and arrays self._elev = grid.at_node["topographic__elevation"] self._sed = grid.at_node["soil__depth"] if "bedrock__elevation" in grid.at_node: self._bedrock__elevation = grid.at_node["bedrock__elevation"] else: self._bedrock__elevation = grid.add_zeros( "bedrock__elevation", at="node", dtype=float ) self._bedrock__elevation[:] = self._elev - self._sed self._discharge = grid.at_node["surface_water__discharge"] self._slope = grid.at_node["topographic__steepest_slope"] self._receiver_node = grid.at_node["flow__receiver_node"] self._receiver_link = grid.at_node["flow__link_to_receiver_node"] super().initialize_output_fields() self._sediment_influx = grid.at_node["bedload_sediment__volume_influx"] self._sediment_outflux = grid.at_node["bedload_sediment__volume_outflux"] self._dHdt = grid.at_node["sediment__rate_of_change"] self._rock_lowering_rate = grid.at_node["bedrock__lowering_rate"] self._abrasion = grid.at_node["bedload_sediment__rate_of_loss_to_abrasion"] self._rock_exposure_fraction = grid.at_node["bedrock__exposure_fraction"] self._rock_abrasion_rate = grid.at_node["bedrock__abrasion_rate"] self._pluck_rate = grid.at_node["bedrock__plucking_rate"] self._setup_length_of_flow_link()
def _setup_length_of_flow_link(self): """Set up a float or array containing length of the flow link from each node, which is needed for the abrasion rate calculations. """ if isinstance(self.grid, HexModelGrid): self._flow_link_length_over_cell_area = ( self.grid.spacing / self.grid.area_of_cell[0] ) self._flow_length_is_variable = False elif isinstance(self.grid, DiagonalsMixIn): self._flow_length_is_variable = True self._grid_has_diagonals = True self._update_flow_link_length_over_cell_area() else: self._flow_length_is_variable = True self._grid_has_diagonals = False self._update_flow_link_length_over_cell_area() def _update_flow_link_length_over_cell_area(self): """Update the ratio of the length of link along which water flows out of each node to the area of the node's cell.""" if self._grid_has_diagonals: flow_link_len = self.grid.length_of_d8 else: flow_link_len = self.grid.length_of_link self._flow_link_length_over_cell_area = ( flow_link_len[self._receiver_link[self.grid.core_nodes]] / self.grid.area_of_cell[self.grid.cell_at_node[self.grid.core_nodes]] )
[docs] def calc_implied_depth(self, grain_diameter=0.01): """Utility function that calculates and returns water depth implied by slope and grain diameter, using Wickert & Schildgen (2019) equation 8. The equation is:: h = ((rho_s - rho / rho)) * (1 + epsilon) * tau_c * (D / S) where the factors on the right are sediment and water density, excess shear-stress factor, critical Shields stress, grain diameter, and slope gradient. Here the prefactor on ``D/S`` assumes sediment density of 2650 kg/m3, water density of 1000 kg/m3, shear-stress factor of 0.2, and critical Shields stress of 0.0495, giving a value of 0.09801. Examples -------- >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> grid = RasterModelGrid((3, 3), xy_spacing=1000.0) >>> elev = grid.add_zeros("topographic__elevation", at="node") >>> elev[3:] = 10.0 >>> sed = grid.add_zeros("soil__depth", at="node") >>> sed[3:] = 100.0 >>> fa = FlowAccumulator(grid) >>> fa.run_one_step() >>> eroder = GravelBedrockEroder(grid) >>> water_depth = eroder.calc_implied_depth() >>> int(water_depth[4] * 1000) 98 """ depth_factor = 0.09801 depth = np.zeros(self._grid.number_of_nodes) nonzero_slope = self._slope > 0.0 depth[nonzero_slope] = ( depth_factor * grain_diameter / self._slope[nonzero_slope] ) return depth
[docs] def calc_implied_width(self, grain_diameter=0.01, time_unit="y"): """Utility function that calculates and returns channel width implied by discharge, slope, and grain diameter, using Wickert & Schildgen (2019) equation 16. The equation is:: b = kb * Q * S**(7/6) / D**(3/2) where the dimensional prefactor, which includes sediment and water density, gravitational acceleration, critical Shields stress, and the transport factor epsilon, is:: kb = 0.17 g**(-1/2) (((rho_s - rho) / rho) (1 + eps) tau_c*)**(-5/3) Using ``g = 9.8 m/s2``, ``rho_s = 2650`` (quartz), ``rho = 1000 kg/m3``, ``eps = 0.2``, and ``tau_c* = 0.0495``, ``kb ~ 2.61 s/m**(1/2)``. Converting to years, ``kb = 8.26e-8``. Examples -------- >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> grid = RasterModelGrid((3, 3), xy_spacing=10000.0) >>> elev = grid.add_zeros("topographic__elevation", at="node") >>> elev[3:] = 100.0 >>> sed = grid.add_zeros("soil__depth", at="node") >>> sed[3:] = 100.0 >>> fa = FlowAccumulator(grid) >>> fa.run_one_step() >>> eroder = GravelBedrockEroder(grid) >>> chan_width = eroder.calc_implied_width() >>> int(chan_width[4] * 100) 3833 >>> grid.at_node["surface_water__discharge"] *= 1.0 / (3600 * 24 * 365.25) >>> chan_width = eroder.calc_implied_width(time_unit="s") >>> int(chan_width[4] * 100) 3838 """ if time_unit[0] == "y": width_fac = 8.26e-8 else: width_fac = 2.61 # assume seconds if not years width = ( width_fac * self._discharge * self._slope ** (7.0 / 6.0) / (grain_diameter**1.5) ) return width
[docs] def calc_rock_exposure_fraction(self): """Update the bedrock exposure fraction. The result is stored in the ``bedrock__exposure_fraction`` field. Examples -------- >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> grid = RasterModelGrid((3, 4), xy_spacing=100.0) >>> elev = grid.add_zeros("topographic__elevation", at="node") >>> sed = grid.add_zeros("soil__depth", at="node") >>> sed[4] = 1000.0 >>> sed[5] = 0.0 >>> fa = FlowAccumulator(grid) >>> fa.run_one_step() >>> eroder = GravelBedrockEroder(grid) >>> eroder.calc_rock_exposure_fraction() >>> eroder._rock_exposure_fraction[4:6] array([ 0., 1.]) >>> sed[4] = 1.0 # exposure frac should be 1/e ~ 0.3679 >>> sed[5] = 2.0 # exposure frac should be 1/e^2 ~ 0.1353 >>> eroder.calc_rock_exposure_fraction() >>> np.round(eroder._rock_exposure_fraction[4:6], 4) array([ 0.3679, 0.1353]) """ self._rock_exposure_fraction[:] = np.exp(-self._sed / self._depth_decay_scale)
[docs] def calc_transport_rate(self): """Calculate and return bed-load transport rate. Calculation uses Wickert-Schildgen approach, and provides volume per time rate. Transport rate is modulated by available sediment, using the exponential function ``(1 - exp(-H / Hs))``, so that transport rate approaches zero as sediment thickness approaches zero. Rate is a volume per time. The result is stored in the ``bedload_sediment__volume_outflux`` field. Examples -------- >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> grid = RasterModelGrid((3, 3), xy_spacing=100.0) >>> elev = grid.add_zeros("topographic__elevation", at="node") >>> elev[3:] = 1.0 >>> sed = grid.add_zeros("soil__depth", at="node") >>> sed[3:] = 100.0 >>> fa = FlowAccumulator(grid) >>> fa.run_one_step() >>> eroder = GravelBedrockEroder(grid) >>> eroder.calc_transport_rate() >>> round(eroder._sediment_outflux[4], 4) 0.019 """ self._sediment_outflux[:] = ( self._trans_coef * self._intermittency_factor * self._discharge * self._slope**_SEVEN_SIXTHS * (1.0 - self._rock_exposure_fraction) )
[docs] def calc_abrasion_rate(self): """Update the volume rate of bedload loss to abrasion, per unit area. Here we use the average of incoming and outgoing sediment flux to calculate the loss rate to abrasion. The result is stored in the ``bedload_sediment__rate_of_loss_to_abrasion`` field. The factor dx (node spacing) appears in the denominator to represent flow segment length (i.e., length of the link along which water is flowing in the cell) divided by cell area. This would need to be updated to handle non-raster and/or non-uniform grids. Examples -------- >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> grid = RasterModelGrid((3, 3), xy_spacing=1000.0) >>> elev = grid.add_zeros("topographic__elevation", at="node") >>> elev[3:] = 10.0 >>> sed = grid.add_zeros("soil__depth", at="node") >>> sed[3:] = 100.0 >>> fa = FlowAccumulator(grid) >>> fa.run_one_step() >>> eroder = GravelBedrockEroder(grid, abrasion_coefficient=0.0002) >>> eroder.calc_transport_rate() >>> eroder.calc_abrasion_rate() >>> int(eroder._abrasion[4] * 1e8) 19 """ cores = self._grid.core_nodes self._abrasion[cores] = ( self._abrasion_coef * 0.5 * (self._sediment_outflux[cores] + self._sediment_influx[cores]) * self._flow_link_length_over_cell_area )
[docs] def calc_bedrock_abrasion_rate(self): """Update the rate of bedrock abrasion. Note: assumes _abrasion (of sediment) and _rock_exposure_fraction have already been updated. Like _abrasion, the rate is a length per time (equivalent to rate of lowering of the bedrock surface by abrasion). Result is stored in the field ``bedrock__abrasion_rate``. >>> import numpy as np >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> grid = RasterModelGrid((3, 4), xy_spacing=100.0) >>> elev = grid.add_zeros("topographic__elevation", at="node") >>> elev[:] = 0.01 * grid.x_of_node >>> sed = grid.add_zeros("soil__depth", at="node") >>> sed[:] = 1.0 >>> fa = FlowAccumulator(grid) >>> fa.run_one_step() >>> eroder = GravelBedrockEroder(grid, abrasion_coefficient=1.0e-4) >>> eroder.calc_rock_exposure_fraction() >>> round(eroder._rock_exposure_fraction[6], 4) 0.3679 >>> eroder.calc_transport_rate() >>> np.round(eroder._sediment_outflux[5:7], 3) array([ 0.024, 0.012]) >>> eroder.calc_abrasion_rate() >>> np.round(eroder._abrasion[5:7], 9) array([ 1.20000000e-08, 6.00000000e-09]) >>> eroder.calc_bedrock_abrasion_rate() >>> np.round(eroder._rock_abrasion_rate[5:7], 10) array([ 4.40000000e-09, 2.20000000e-09]) """ self._rock_abrasion_rate = self._abrasion * self._rock_exposure_fraction
[docs] def calc_bedrock_plucking_rate(self): """Update the rate of bedrock erosion by plucking. The rate is a volume per area per time [L/T], equivalent to the rate of lowering of the bedrock surface relative to the underlying material as a result of plucking. Result is stored in the field ``bedrock__plucking_rate``. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> grid_res = 100.0 >>> grid = RasterModelGrid((3, 3), xy_spacing=grid_res) >>> elev = grid.add_zeros("topographic__elevation", at="node") >>> elev[4] = 1.0 >>> sed = grid.add_zeros("soil__depth", at="node") >>> fa = FlowAccumulator(grid) >>> fa.run_one_step() >>> eroder = GravelBedrockEroder(grid) >>> eroder.calc_rock_exposure_fraction() >>> eroder.calc_bedrock_plucking_rate() >>> predicted_plucking_rate = 1.0e-6 * 1.0e4 * 0.01 ** (7.0 / 6.0) / grid_res >>> round(predicted_plucking_rate, 9) # Kp Q S^(7/6) 4.64e-07 >>> int(round(eroder._pluck_rate[4] * 1e9)) 464 """ cores = self._grid.core_nodes self._pluck_rate[cores] = ( self._plucking_coef * self._intermittency_factor * self._discharge[cores] * self._slope[cores] ** _SEVEN_SIXTHS * self._rock_exposure_fraction[cores] ) * self._flow_link_length_over_cell_area
[docs] def calc_sediment_influx(self): """Update the volume influx at each node. Result is stored in the field ``bedload_sediment__volume_influx``. """ self._sediment_influx[:] = 0.0 for c in self.grid.core_nodes: # send sediment downstream r = self._receiver_node[c] self._sediment_influx[r] += self._sediment_outflux[c]
[docs] def calc_sediment_rate_of_change(self): """Update the rate of thickness change of coarse sediment at each core node. Result is stored in the field ``sediment__rate_of_change``. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> grid = RasterModelGrid((3, 4), xy_spacing=100.0) >>> elev = grid.add_zeros("topographic__elevation", at="node") >>> elev[:] = 0.01 * grid.x_of_node >>> sed = grid.add_zeros("soil__depth", at="node") >>> sed[:] = 100.0 >>> grid.status_at_node[grid.perimeter_nodes] = grid.BC_NODE_IS_CLOSED >>> grid.status_at_node[4] = grid.BC_NODE_IS_FIXED_VALUE >>> fa = FlowAccumulator(grid) >>> fa.run_one_step() >>> eroder = GravelBedrockEroder(grid) >>> eroder.calc_transport_rate() >>> eroder.calc_sediment_influx() >>> eroder.calc_sediment_rate_of_change() >>> np.round(eroder._sediment_outflux[4:7], 3) array([ 0. , 0.038, 0.019]) >>> np.round(eroder._sediment_influx[4:7], 3) array([ 0.038, 0.019, 0. ]) >>> np.round(eroder._dHdt[5:7], 8) array([ -2.93000000e-06, -2.93000000e-06]) """ cores = self.grid.core_nodes self._dHdt[cores] = self._porosity_factor * ( (self._sediment_influx[cores] - self._sediment_outflux[cores]) / self.grid.area_of_cell[self.grid.cell_at_node[cores]] + (self._pluck_rate[cores] * self._pluck_coarse_frac) - self._abrasion[cores] )
def _update_slopes(self): """Update self._slope. Result is stored in field ``topographic__steepest_slope``. """ dz = np.maximum(self._elev - self._elev[self._receiver_node], 0.0) if self._flow_length_is_variable: if self._grid_has_diagonals: link_len = self.grid.length_of_d8 else: link_len = self.grid.length_of_link self._slope[self.grid.core_nodes] = ( dz[self.grid.core_nodes] / link_len[self.grid.core_nodes] ) else: self._slope[self.grid.core_nodes] = ( dz[self.grid.core_nodes] / self.grid.spacing )
[docs] def update_rates(self): """Update rate of sediment thickness change, and rate of bedrock lowering by abrasion and plucking. Combined rate of rock lowering relative to underlying material is stored in the field ``bedrock__lowering_rate``. Examples -------- >>> import numpy as np >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator >>> grid = RasterModelGrid((3, 4), xy_spacing=100.0) >>> elev = grid.add_zeros("topographic__elevation", at="node") >>> elev[:] = 0.01 * grid.x_of_node >>> sed = grid.add_zeros("soil__depth", at="node") >>> sed[:] = 1000.0 >>> grid.status_at_node[grid.perimeter_nodes] = grid.BC_NODE_IS_CLOSED >>> grid.status_at_node[4] = grid.BC_NODE_IS_FIXED_VALUE >>> fa = FlowAccumulator(grid) >>> fa.run_one_step() >>> eroder = GravelBedrockEroder(grid) >>> eroder.run_one_step(1000.0) >>> np.round(elev[4:7], 4) array([ 0. , 0.9971, 1.9971]) """ self._update_slopes() self.calc_rock_exposure_fraction() self.calc_transport_rate() self.calc_sediment_influx() if self._flow_length_is_variable: self._update_flow_link_length_over_cell_area() self.calc_bedrock_plucking_rate() if self._abrasion_coef > 0.0: self.calc_abrasion_rate() self.calc_bedrock_abrasion_rate() self.calc_sediment_rate_of_change() self._rock_lowering_rate = self._pluck_rate + self._rock_abrasion_rate
def _update_rock_sed_and_elev(self, dt): """Update rock elevation, sediment thickness, and elevation using current rates of change extrapolated forward by time dt. """ self._sed += self._dHdt * dt self._bedrock__elevation -= self._rock_lowering_rate * dt self._elev[:] = self._bedrock__elevation + self._sed def _estimate_max_time_step_size(self, upper_limit_dt=1.0e6): """ Estimate the maximum possible time-step size that avoids flattening any streamwise slope or exhausting sediment. The ``upper_limit_dt`` parameter handles the special case of a nonexistent upper limit, which only occurs when there are no nodes at which either sediment or slope gradient is declining. Value is arbitrary as long as it is >= the user-provided global time-step size (in :meth:`~.run_one_step`). Parameters ---------- dt : float (default 1.0e6) Maximum time step size """ sed_is_declining = np.logical_and(self._dHdt < 0.0, self._sed > 0.0) if np.any(sed_is_declining): min_time_to_exhaust_sed = np.amin( -self._sed[sed_is_declining] / self._dHdt[sed_is_declining] ) else: min_time_to_exhaust_sed = upper_limit_dt dzdt = self._dHdt - self._rock_lowering_rate rate_diff = dzdt[self._receiver_node] - dzdt height_above_rcvr = self._elev - self._elev[self._receiver_node] slope_is_declining = np.logical_and(rate_diff > 0.0, height_above_rcvr > 0.0) if np.any(slope_is_declining): min_time_to_flatten_slope = np.amin( height_above_rcvr[slope_is_declining] / rate_diff[slope_is_declining] ) else: min_time_to_flatten_slope = upper_limit_dt return 0.5 * min(min_time_to_exhaust_sed, min_time_to_flatten_slope)
[docs] def run_one_step(self, global_dt): """Advance solution by time interval global_dt, subdividing into sub-steps as needed.""" time_remaining = global_dt while time_remaining > 0.0: self.update_rates() max_dt = self._estimate_max_time_step_size() this_dt = min(max_dt, time_remaining) this_dt = max(this_dt, _DT_MAX) self._update_rock_sed_and_elev(this_dt) time_remaining -= this_dt