Source code for landlab.utils.structured_grid

#! /usr/bin/env python
"""Utility functions for structured grid of elements with four neighbors."""

import contextlib
import itertools

import numpy as np

from ..core.utils import as_id_array
from ..grid.base import BAD_INDEX_VALUE
from ..grid.nodestatus import NodeStatus


[docs] def node_count(shape): """Total number of nodes. The total number of nodes in a structured grid with dimensions given by the tuple, *shape*. Where *shape* is the number of node rows and node columns. >>> from landlab.utils.structured_grid import node_count >>> node_count((3, 4)) 12 """ assert len(shape) == 2 return shape[0] * shape[1]
[docs] def interior_node_count(shape): """Number of interior nodes. Return the count of the number of interior nodes of a structured grid of dimensions, *shape*. >>> from landlab.utils.structured_grid import node_count, interior_node_count >>> node_count((2, 4)) 8 >>> interior_node_count((2, 4)) 0 >>> interior_node_count((1, 4)) 0 >>> interior_node_count((3, 4)) 2 """ assert len(shape) == 2 if np.min(shape) > 2: return (shape[0] - 2) * (shape[1] - 2) else: return 0
[docs] def cell_count(shape): """Total number of cells. The total number of cells in a structured grid with dimensions, *shape*. Where *shape* is a tuple that gives the dimensions of the grid as number of rows of nodes followed by number of columns of nodes. >>> from landlab.utils.structured_grid import cell_count >>> cell_count((3, 4)) 2 >>> cell_count((1, 4)) 0 """ assert len(shape) == 2 if np.min(shape) > 2: return (shape[0] - 2) * (shape[1] - 2) else: return 0
[docs] def active_cell_count(shape): """Number of active cells. Number of active cells. By default, all cells are active so this is the same as cell_count. (active = core+open boundary) """ return cell_count(shape)
[docs] def core_cell_count(shape): """Number of core cells. Number of core cells. By default, all cells are core so this is the same as cell_count. """ return cell_count(shape)
[docs] def perimeter_node_count(shape): """Number of perimeter nodes. Number of nodes that are on the perimeter of a structured grid with dimensions, *shape*, and thus boundary nodes. Examples -------- >>> from landlab.utils.structured_grid import perimeter_node_count >>> perimeter_node_count((3, 4)) 10 """ assert len(shape) == 2 return 2 * (shape[0] - 2) + 2 * (shape[1] - 2) + 4
[docs] def interior_cell_count(shape): """Number of interior cells. Number of interior cells. Since cells are only defined on interior nodes, this is the same as cell_count. """ return cell_count(shape)
[docs] def face_count(shape): """Total number of faces. Total number of faces in a structured grid with dimensions, *shape*. Each cell has four faces, and shared faces only count once. Examples -------- >>> from landlab.utils.structured_grid import face_count >>> face_count((3, 4)) 7 """ assert len(shape) == 2 if np.min(shape) > 2: return (shape[0] - 1) * (shape[1] - 2) + (shape[0] - 2) * (shape[1] - 1) else: return 0
[docs] def active_face_count(shape): """Number of active faces. Total number of active faces in a structured grid with dimensions, *shape*. Each cell has four faces, and shared faces only count once. An active face is one that has a corresponing active link. >>> from landlab.utils.structured_grid import active_face_count >>> active_face_count((3, 4)) 7 """ return face_count(shape)
[docs] def top_index_iter(shape): """Iterator for the top boundary indices of a structured grid.""" return range(shape[1] * (shape[0] - 1), shape[0] * shape[1])
[docs] def bottom_index_iter(shape): """Iterator for the bottom boundary indices of a structured grid.""" return range(0, shape[1])
[docs] def left_index_iter(shape): """Iterator for the left boundary indices of a structured grid.""" return range(0, shape[0] * shape[1], shape[1])
[docs] def right_index_iter(shape): """Iterator for the right boundary indices of a structured grid.""" return range(shape[1] - 1, shape[0] * shape[1], shape[1])
[docs] def left_right_iter(shape, *args): """Iterator for the left and right boundary indices of a structured grid. This iterates over the indices in order rather than iterating all of the left boundary and then all of the right boundary. Examples -------- >>> import numpy as np >>> from landlab.utils.structured_grid import left_right_iter >>> np.fromiter(left_right_iter((4, 3)), dtype=int) array([ 0, 2, 3, 5, 6, 8, 9, 11]) >>> np.fromiter(left_right_iter((4, 3), 2), dtype=int) array([0, 2, 3, 5]) >>> np.fromiter(left_right_iter((4, 3), 2, 4), dtype=int) array([ 6, 8, 9, 11]) >>> np.fromiter(left_right_iter((4, 3), 1, 4, 2), dtype=int) array([ 3, 5, 9, 11]) """ if len(args) == 0: iter_rows = range(0, shape[0], 1) elif len(args) == 1: iter_rows = range(0, args[0], 1) elif len(args) == 2: iter_rows = range(args[0], args[1], 1) elif len(args) == 3: iter_rows = range(args[0], args[1], args[2]) for row in iter_rows: yield row * shape[1] yield row * shape[1] + shape[1] - 1
[docs] def bottom_top_iter(shape): """Iterator for bottom then top indices of a structured grid. Examples -------- >>> import numpy as np >>> from landlab.utils.structured_grid import bottom_top_iter >>> np.fromiter(bottom_top_iter((4, 3)), dtype=int) array([ 0, 1, 2, 9, 10, 11]) """ return itertools.chain(bottom_index_iter(shape), top_index_iter(shape))
[docs] def perimeter_iter(shape): """Iterator for perimeter nodes. Iterates over all of the perimeter node indices of a structured grid in order. Examples -------- >>> import numpy as np >>> from landlab.utils.structured_grid import perimeter_iter >>> np.fromiter(perimeter_iter((4, 3)), dtype=int) array([ 0, 1, 2, 3, 5, 6, 8, 9, 10, 11]) """ return itertools.chain( bottom_index_iter(shape), left_right_iter(shape, 1, shape[0] - 1), top_index_iter(shape), )
[docs] def perimeter_nodes(shape): """Array of perimeter nodes. An array of the indices of the perimeter nodes of a structured grid. Examples -------- >>> from landlab.utils.structured_grid import perimeter_nodes >>> perimeter_nodes((3, 4)) array([ 0, 1, 2, 3, 4, 7, 8, 9, 10, 11]) """ return np.fromiter(perimeter_iter(shape), dtype=int)
[docs] def corners(shape): """Array of the indices of the grid corner nodes.""" return np.array( [0, shape[1] - 1, shape[1] * (shape[0] - 1), shape[1] * shape[0] - 1] )
[docs] def bottom_edge_node_ids(shape): """Array of nodes on the bottom edge.""" return np.fromiter(bottom_index_iter(shape), dtype=int)
[docs] def top_edge_node_ids(shape): """Array of nodes on the top edge.""" return np.fromiter(top_index_iter(shape), dtype=int)
[docs] def left_edge_node_ids(shape): """Array of nodes on the left edge.""" return np.fromiter(left_index_iter(shape), dtype=int)
[docs] def right_edge_node_ids(shape): """Array of nodes on the right edge.""" return np.fromiter(right_index_iter(shape), dtype=int)
[docs] def interior_iter(shape): """Iterator for the interior nodes of a structured grid. Examples -------- >>> import numpy as np >>> from landlab.utils.structured_grid import interior_iter >>> np.fromiter(interior_iter((4, 3)), dtype=int) array([4, 7]) """ interiors = [] interiors_per_row = shape[1] - 2 for row in range(shape[1] + 1, shape[1] * (shape[0] - 1), shape[1]): interiors.append(range(row, row + interiors_per_row)) return itertools.chain(*interiors)
[docs] def interior_nodes(shape): """Array of interior nodes.""" return np.fromiter(interior_iter(shape), dtype=int)
[docs] def node_coords(shape, *args): """Get node x and y coordinates. Get x, y coordinates for nodes in a structured grid with dimensions, *shape*. Use the optional argument *spacing* to give the spacing in each dimension, and *origin* the start of the coordinates in each dimension. Parameters ---------- shape : tuple of int Number of node rows and columns. spacing : tuple, optional Row and column spacing. origin : tuple, optional Coordinate of lower-left node. Examples -------- >>> from landlab.utils.structured_grid import node_coords >>> (cols, rows) = node_coords((3, 2)) >>> rows array([0., 0., 1., 1., 2., 2.]) >>> cols array([0., 1., 0., 1., 0., 1.]) """ try: spacing = args[0] except IndexError: spacing = np.ones(len(shape), dtype=float) else: assert len(spacing) == len(shape) try: origin = args[1] except IndexError: origin = np.zeros(len(shape), dtype=float) else: assert len(origin) == len(origin) node_count_ = np.prod(shape) row_y = np.arange(shape[0]) * spacing[0] + origin[0] col_x = np.arange(shape[1]) * spacing[1] + origin[1] (node_x, node_y) = np.meshgrid(col_x, row_y) node_x.shape = (node_count_,) node_y.shape = (node_count_,) return (node_x, node_y)
[docs] def node_at_cell(shape): """Array of nodes at cells. Indices of the nodes belonging to each cell. Examples -------- >>> from landlab.utils.structured_grid import node_at_cell >>> node_at_cell((4, 3)) array([4, 7]) """ node_ids = np.arange(node_count(shape)) node_ids.shape = shape cell_node = node_ids[1:-1, 1:-1].copy() cell_node.shape = ((shape[0] - 2) * (shape[1] - 2),) return cell_node
[docs] def status_at_node(shape, boundary_status=NodeStatus.FIXED_VALUE): """Array of the statuses of nodes. The statuses of the nodes in a structured grid with dimensions, *shape*. Use the *boundary_status* keyword to specify the status of the top, bottom, left and right boundary nodes. """ status = np.empty(np.prod(shape), dtype=np.int8) status[interior_nodes(shape)] = NodeStatus.CORE status[perimeter_nodes(shape)] = boundary_status return status
[docs] def active_face_index(shape): """Array of face indices.""" return np.arange(active_face_count(shape))
[docs] def active_inlinks2(shape, node_status=None): """Array of active links entering nodes. Finds and returns the link IDs of active links coming in to each node (that is, active links for which the node is the link head). Parameters ---------- shape : 2-element tuple of ints Number of rows and columns in the grid node_status (optional) : numpy array of bool (x # of nodes) False where node is a closed boundary; True elsewhere Returns ------- 2d numpy array of int (2 x number of grid nodes) Link ID of incoming links to each node Examples -------- >>> from landlab.utils.structured_grid import active_inlinks2 >>> active_inlinks2((3, 4)) array([[-1, -1, -1, -1, -1, 4, 5, -1, -1, 11, 12, -1], [-1, -1, -1, -1, -1, 7, 8, 9, -1, -1, -1, -1]]) Notes ----- There are at most two inlinks for each node. The first row in the returned array gives the ID of the vertical incoming link from below (south), or -1 if there is none. The second row gives the link ID of the horizontal link coming in from the left (or -1). """ links = np.vstack( ( active_south_links2(shape, node_status), active_west_links2(shape, node_status), ) ) links.shape = (2, node_count(shape)) return links
[docs] def active_outlinks2(shape, node_status=None): """Array of active links leaving nodes. Finds and returns the link IDs of active links going out of each node (that is, active links for which the node is the link tail). Parameters ---------- shape : 2-element tuple of ints Number of rows and columns in the grid node_status (optional) : numpy array of bool (x # of nodes) False where node is a closed boundary; True elsewhere Returns ------- 2d numpy array of int (2 x number of grid nodes) Link ID of outgoing links from each node Examples -------- >>> from landlab.utils.structured_grid import active_outlinks2 >>> active_outlinks2((3, 4)) array([[-1, 4, 5, -1, -1, 11, 12, -1, -1, -1, -1, -1], [-1, -1, -1, -1, 7, 8, 9, -1, -1, -1, -1, -1]]) Notes ----- There are at most two outlinks for each node. The first row in the returned array gives the ID of the vertical outgoing link to above (north), or -1 if there is none. The second row gives the link ID of the horizontal link going out to the right (east) (or -1). """ links = np.vstack( ( active_north_links2(shape, node_status), active_east_links2(shape, node_status), ) ) links.shape = (2, node_count(shape)) return links
# def vertical_active_link_ids(shape): # link_ids = np.arange(vertical_active_link_count(shape), dtype=int) # link_ids.shape = (shape[0] - 1, shape[1] - 2) # return link_ids
[docs] def active_north_links2(shape, node_status=None): """Array of active links pointing to the the north. >>> from landlab.utils.structured_grid import active_north_links2 >>> active_north_links2((3, 4)) array([[-1, 4, 5, -1], [-1, 11, 12, -1], [-1, -1, -1, -1]]) """ active_north_links_ = np.empty(shape, dtype=int) with contextlib.suppress(ValueError): links = vertical_active_link_ids2(shape, node_status=node_status) links.shape = (shape[0] - 1, shape[1] - 2) active_north_links_[:-1, 1:-1] = links active_north_links_[:, (0, -1)] = -1 active_north_links_[-1, :] = -1 return active_north_links_
[docs] def active_south_links2(shape, node_status=None): """Array of active links pointing to the the south. Finds and returns link IDs of active links that enter each node from the south (bottom), or -1 where no such active link exists. Parameters ---------- shape : 2-element tuple of int number of rows and columns in grid node_status (optional) : 1d numpy array of bool False where node is a closed boundary, True otherwise Returns ------- 2d numpy array of int Link ID of active link connecting to a node from the south, or -1 Examples -------- >>> from landlab.utils.structured_grid import active_south_links2 >>> active_south_links2((3, 4)) array([[-1, -1, -1, -1], [-1, 4, 5, -1], [-1, 11, 12, -1]]) Notes ----- Like active_south_links, but returns link IDs. """ active_south_links_ = -np.ones(shape, dtype=int) links = vertical_active_link_ids2(shape, node_status=node_status) active_south_links_[1:, 1:-1] = links return active_south_links_
[docs] def active_west_links2(shape, node_status=None): """Array of active links pointing to the the west. Examples -------- >>> from landlab.utils.structured_grid import active_west_links2 >>> active_west_links2((3, 4)) array([[-1, -1, -1, -1], [-1, 7, 8, 9], [-1, -1, -1, -1]]) """ active_west_links_ = -np.ones(shape, dtype=int) active_west_links_[1:-1, 1:] = horizontal_active_link_ids2( shape, node_status=node_status ) return active_west_links_
[docs] def active_east_links2(shape, node_status=None): """Array of active links pointing to the the east. Examples -------- >>> from landlab.utils.structured_grid import active_east_links2 >>> active_east_links2((3, 4)) array([[-1, -1, -1, -1], [ 7, 8, 9, -1], [-1, -1, -1, -1]]) """ active_east_links_ = -np.ones(shape, dtype=int) active_east_links_[1:-1, :-1] = horizontal_active_link_ids2( shape, node_status=node_status ) return active_east_links_
[docs] def node_index_with_halo(shape, halo_indices=BAD_INDEX_VALUE): """Array of links with a halo of no-data values. Examples -------- >>> from landlab.utils.structured_grid import node_index_with_halo >>> node_index_with_halo((2, 3), halo_indices=-1) array([[-1, -1, -1, -1, -1], [-1, 0, 1, 2, -1], [-1, 3, 4, 5, -1], [-1, -1, -1, -1, -1]]) """ shape_with_halo = np.array(shape) + 2 ids = np.empty(shape_with_halo, dtype=int) (interiors, boundaries) = ( interior_nodes(shape_with_halo), perimeter_nodes(shape_with_halo), ) ids.flat[interiors] = range(interior_node_count(shape_with_halo)) ids.flat[boundaries] = halo_indices return ids
[docs] def cell_index_with_halo(shape, halo_indices=BAD_INDEX_VALUE, inactive_indices=None): """Array of cells with a halo of no-data values. Examples -------- >>> from landlab.utils.structured_grid import cell_index_with_halo >>> cell_index_with_halo((2, 3), halo_indices=-1) array([[-1, -1, -1, -1, -1], [-1, 0, 1, 2, -1], [-1, 3, 4, 5, -1], [-1, -1, -1, -1, -1]]) >>> cell_index_with_halo((2, 3), halo_indices=-1, inactive_indices=-1) array([[-1, -1, -1, -1, -1], [-1, -1, -1, -1, -1], [-1, -1, -1, -1, -1], [-1, -1, -1, -1, -1]]) """ ids = node_index_with_halo(shape, halo_indices=halo_indices) if inactive_indices is not None: ids[:, (1, -2)] = inactive_indices ids[(1, -2), :] = inactive_indices return ids
def _neighbor_node_ids(ids_with_halo): """Matrix of four neighbor nodes for each node.""" shape = (ids_with_halo.shape[0] - 2, ids_with_halo.shape[1] - 2) kwds = { "strides": ids_with_halo.strides, "buffer": ids_with_halo, "dtype": ids_with_halo.dtype, "offset": ids_with_halo.itemsize * (ids_with_halo.shape[1]), } # kwds["offset"] = ids_with_halo.itemsize * (ids_with_halo.shape[1]) west_ids = np.ndarray(shape, **kwds) kwds["offset"] = ids_with_halo.itemsize * (ids_with_halo.shape[1] + 2) east_ids = np.ndarray(shape, **kwds) kwds["offset"] = ids_with_halo.itemsize south_ids = np.ndarray(shape, **kwds) kwds["offset"] = ids_with_halo.itemsize * (ids_with_halo.shape[1] * 2 + 1) north_ids = np.ndarray(shape, **kwds) return np.vstack((east_ids.flat, north_ids.flat, west_ids.flat, south_ids.flat)) def _centered_node_ids(ids_with_halo): """Array of nodes taken from a matrix of nodes with a halo.""" shape = (ids_with_halo.shape[0] - 2, ids_with_halo.shape[1] - 2) kwds = { "strides": ids_with_halo.strides, "buffer": ids_with_halo, "dtype": ids_with_halo.dtype, "offset": ids_with_halo.itemsize * (ids_with_halo.shape[1] + 1), } return np.ndarray(shape, **kwds)
[docs] def neighbor_node_ids(shape, inactive=BAD_INDEX_VALUE): """Matrix of four neighbor nodes for each node.""" return linked_neighbor_node_ids(shape, [], inactive=inactive)
[docs] def linked_neighbor_node_ids( shape, closed_boundary_nodes, open_boundary_nodes=None, inactive=BAD_INDEX_VALUE ): """Matrix of four neighbor nodes for each node.""" if open_boundary_nodes is None: open_boundary_nodes = [] ids_with_halo = node_index_with_halo(shape, halo_indices=inactive) # Everything that touches a closed boundary is inactive if len(closed_boundary_nodes) > 0: ids = _centered_node_ids(ids_with_halo) ids.flat[closed_boundary_nodes] = inactive neighbors = _neighbor_node_ids(ids_with_halo) # Everything that a closed boundary touches is inactive if len(closed_boundary_nodes) > 0: neighbors[:, closed_boundary_nodes] = inactive if len(open_boundary_nodes) > 0: _set_open_boundary_neighbors(neighbors, open_boundary_nodes, inactive) return neighbors
def _set_open_boundary_neighbors(neighbors, open_boundary_nodes, value): """Set values for open-boundary neighbor-nodes.""" open_boundary_neighbors = neighbors[:, open_boundary_nodes] is_open_boundary_neighbor = _find_open_boundary_neighbors( neighbors, open_boundary_nodes ) nodes = np.choose(is_open_boundary_neighbor, (open_boundary_neighbors, value)) neighbors[:, open_boundary_nodes] = nodes def _find_open_boundary_neighbors(neighbors, open_boundary_nodes): """Array of booleans that indicate if a neighbor is an open boundary.""" open_boundary_neighbors = neighbors[:, open_boundary_nodes] is_open_boundary_neighbor = np.isin(open_boundary_neighbors, open_boundary_nodes) is_open_boundary_neighbor.shape = (neighbors.shape[0], len(open_boundary_nodes)) return is_open_boundary_neighbor
[docs] def neighbor_node_array(shape, **kwds): """Array of neighbor nodes. Examples -------- >>> from landlab.utils.structured_grid import neighbor_node_array >>> neighbors = neighbor_node_array((2, 3), inactive=-1) >>> neighbors.T array([[ 1, 3, -1, -1], [ 2, 4, 0, -1], [-1, 5, 1, -1], [ 4, -1, -1, 0], [ 5, -1, 3, 1], [-1, -1, 4, 2]]) """ closed_boundary_nodes = kwds.pop("closed_boundary_nodes", []) open_boundary_nodes = kwds.get("open_boundary_nodes", []) if len(closed_boundary_nodes) > 0 or len(open_boundary_nodes): neighbors = linked_neighbor_node_ids(shape, closed_boundary_nodes, **kwds) else: neighbors = neighbor_node_ids(shape, **kwds) return neighbors
[docs] def neighbor_cell_array(shape, out_of_bounds=BAD_INDEX_VALUE, contiguous=True): """Array of neighbor cells. Examples -------- >>> from landlab.utils.structured_grid import neighbor_cell_array >>> neighbors = neighbor_cell_array((2, 3), out_of_bounds=-1) >>> len(neighbors) == 0 True >>> neighbors = neighbor_cell_array((3, 3), out_of_bounds=-1) >>> neighbors array([[-1, -1, -1, -1]]) >>> neighbors = neighbor_cell_array((5, 4), out_of_bounds=-1) >>> neighbors array([[ 1, 2, -1, -1], [-1, 3, 0, -1], [ 3, 4, -1, 0], [-1, 5, 2, 1], [ 5, -1, -1, 2], [-1, -1, 4, 3]]) """ if cell_count(shape) > 0: shape = np.array(shape) - 2 ids = node_index_with_halo(shape, halo_indices=out_of_bounds) neighbors = np.vstack( ( ids[1 : shape[0] + 1, 2:].flat, ids[2:, 1 : shape[1] + 1].flat, ids[1 : shape[0] + 1, : shape[1]].flat, ids[: shape[0], 1 : shape[1] + 1].flat, ) ).T if contiguous: return neighbors.copy() else: return neighbors else: return np.array([], dtype=int)
[docs] def diagonal_node_array( shape, out_of_bounds=BAD_INDEX_VALUE, contiguous=True, boundary_node_mask=None ): """Array of diagonal nodes. Creates a list of IDs of the diagonal cells to each cell, as a 2D array. Only interior cells are assigned neighbors; boundary cells get -1 for each neighbor. The order of the diagonal cells is [topright, topleft, bottomleft, bottomright]. Examples -------- >>> from landlab.utils.structured_grid import diagonal_node_array >>> diags = diagonal_node_array((2, 3), out_of_bounds=-1) >>> diags array([[ 4, -1, -1, -1], [ 5, 3, -1, -1], [-1, 4, -1, -1], [-1, -1, -1, 1], [-1, -1, 0, 2], [-1, -1, 1, -1]]) >>> diags.flags["C_CONTIGUOUS"] True >>> diags = diagonal_node_array((2, 3), out_of_bounds=-1, contiguous=False) >>> diags.flags["C_CONTIGUOUS"] False """ # NG didn't touch this, but she thinks this should be nodes, not cells. ids = node_index_with_halo(shape, halo_indices=out_of_bounds) diags = np.vstack( ( ids[2:, 2:].flat, ids[2:, : shape[1]].flat, ids[: shape[0], : shape[1]].flat, ids[: shape[0], 2:].flat, ) ).T if boundary_node_mask is not None: boundaries = np.empty(4, dtype=int) boundaries.fill(boundary_node_mask) diags[perimeter_nodes(shape)] = boundaries if contiguous: return diags.copy() else: return diags
[docs] def diagonal_cell_array(shape, out_of_bounds=BAD_INDEX_VALUE, contiguous=True): """Array of diagonal cells. Construct a matrix of cell indices to each diagonally adjacent cell of a structured grid. If a cell does not have a diagonal neighbor, set the index for that neighbor to *out_of_bounds*. Examples -------- A grid without any cells returns an empty array. >>> from landlab.utils.structured_grid import diagonal_cell_array >>> diags = diagonal_cell_array((2, 3), out_of_bounds=-1) >>> len(diags) == 0 True A grid that has only one cell does not have any neighbors so all of its diagonals are set to *out_of_bounds*. >>> diags = diagonal_cell_array((3, 3), out_of_bounds=-1) >>> diags array([[-1, -1, -1, -1]]) >>> diags = diagonal_cell_array((4, 4), out_of_bounds=-1) >>> diags array([[ 3, -1, -1, -1], [-1, 2, -1, -1], [-1, -1, -1, 1], [-1, -1, 0, -1]]) >>> diags = diagonal_cell_array((4, 5), out_of_bounds=-1) >>> diags array([[ 4, -1, -1, -1], [ 5, 3, -1, -1], [-1, 4, -1, -1], [-1, -1, -1, 1], [-1, -1, 0, 2], [-1, -1, 1, -1]]) """ if cell_count(shape) > 0: shape = np.array(shape) - 2 ids = node_index_with_halo(shape, halo_indices=out_of_bounds) diags = np.vstack( ( ids[2:, 2:].flat, ids[2:, : shape[1]].flat, ids[: shape[0], : shape[1]].flat, ids[: shape[0], 2:].flat, ) ).T if contiguous: return diags.copy() else: return diags else: return np.array([], dtype=int)
[docs] def node_has_boundary_neighbor(neighbors, diagonals, out_of_bounds=BAD_INDEX_VALUE): """Array of booleans that indicate if a node has a boundary neighbor. .. note:: DEJH thinks this method is broken since terminology update: it returns closed neighbors, not boundary neighbors. """ return out_of_bounds in neighbors | out_of_bounds in diagonals
[docs] def reshape_array(shape, array, flip_vertically=False, copy=False): """Reshape a flat array. Examples -------- >>> from landlab.utils.structured_grid import reshape_array >>> x = np.arange(12.0) >>> y = reshape_array((3, 4), x) >>> y.shape == (3, 4) True >>> y array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]]) >>> y.flags["C_CONTIGUOUS"] True >>> x[0] = -1 >>> y[0, 0] -1.0 >>> x = np.arange(12.0) >>> y = reshape_array((3, 4), x, flip_vertically=True) >>> y array([[ 8., 9., 10., 11.], [ 4., 5., 6., 7.], [ 0., 1., 2., 3.]]) >>> y.flags["C_CONTIGUOUS"] False >>> x[0] = -1 >>> y[-1, 0] -1.0 """ reshaped_array = array.view() try: reshaped_array.shape = shape except ValueError: raise if flip_vertically: flipped_array = reshaped_array[::-1, :] if copy: return flipped_array.copy() else: return flipped_array else: if copy: return reshaped_array.copy() else: return reshaped_array
[docs] def nodes_around_points_on_unit_grid(shape, coords, mode="raise"): """Array of nodes around x, y points on a grid of unit spacing. Returns the nodes around a point on a structured grid with unit spacing and zero origin. Examples -------- >>> from landlab.utils.structured_grid import nodes_around_points_on_unit_grid >>> nodes_around_points_on_unit_grid((3, 3), (0.1, 0.1)) array([0, 3, 4, 1]) >>> nodes_around_points_on_unit_grid((3, 3), (1.0, 1.0)) array([4, 7, 8, 5]) """ if isinstance(coords[0], np.ndarray): (rows, cols) = (as_id_array(coords[0]), as_id_array(coords[1])) else: (rows, cols) = (int(coords[0]), int(coords[1])) return as_id_array( np.ravel_multi_index( ((rows, rows + 1, rows + 1, rows), (cols, cols, cols + 1, cols + 1)), shape, mode=mode, ).T )
[docs] def nodes_around_points(shape, coords, spacing=(1.0, 1.0), origin=(0.0, 0.0)): """Array of nodes around x, y points on a grid of non-unit spacing. Returns the nodes around a point on a structured grid with row and column *spacing*, and *origin*. Examples -------- >>> from landlab.utils.structured_grid import nodes_around_points >>> x = np.array([0.9, 1.0]) >>> y = np.array([0.1, 1.0]) >>> nodes_around_points((3, 3), (y, x)) array([[0, 3, 4, 1], [4, 7, 8, 5]]) >>> nodes_around_points((3, 3), (2.0, 1.0)) Traceback (most recent call last): ... ValueError: invalid entry in coordinates array """ return as_id_array( nodes_around_points_on_unit_grid( shape, ( (coords[0] - origin[0]) / spacing[0], (coords[1] - origin[1]) / spacing[1], ), ) )
[docs] def nodes_around_point(shape, coords, spacing=(1.0, 1.0)): """Array of nodes around a single point on a grid of non-unit spacing.""" node_id = int(coords[0] // spacing[0] * shape[1] + coords[1] // spacing[1]) if node_id + shape[1] + 1 >= shape[0] * shape[1] or node_id < 0: raise ValueError("invalid entry in coordinates array") return np.array([node_id, node_id + shape[1], node_id + shape[1] + 1, node_id + 1])