landlab.components.drainage_density.drainage_density¶
Landlab component to calculate drainage density.
- class DrainageDensity[source]¶
Bases:
Component
Calculate drainage density over a DEM.
Landlab component that implements the distance to channel algorithm of Tucker et al., 2001.
This component requires EITHER a
channel__mask array
with 1’s where channels exist and 0’s elsewhere, OR a set of coefficients and exponents for a slope-area relationship and a channelization threshold to compare against that relationship.If an array is provided it MUST be of type
np.uint8
. See the example below for how to make such an array.The
channel__mask
array will be assigned to an at-node field with the namechannel__mask
. If the channel__mask was originaly created from a passed array, a user can update this array to change the mask.If the
channel__mask
is created using an area coefficent, slope coefficient, area exponent, slope exponent, and channelization threshold, the location of the mask will be re-update when calculate_drainage_density is called.If an area coefficient, \(C_A\), a slope coefficent, \(C_S\), an area exponent, \(m_r\), a slope exponent, \(n_r\), and channelization threshold \(T_C\) are provided, nodes that meet the criteria
\[C_A A^{m_r} C_s S^{n_r} > T_c\]where \(A\) is the drainage density and \(S\) is the local slope, will be marked as channel nodes.
The
calculate_drainage_density
function returns drainage density for the model domain. This function calculates the distance from every node to the nearest channel node \(L\) along the flow line of steepest descent (assuming D8 routing if the grid is a RasterModelGrid).This component stores this distance a field, called:
surface_to_channel__minimum_distance
. The drainage density is then calculated (after Tucker et al., 2001):\[D_d = \frac{1}{2\overline{L}}\]where \(\overline{L}\) is the mean L for the model domain.
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator, FastscapeEroder >>> mg = RasterModelGrid((10, 10)) >>> _ = mg.add_zeros("node", "topographic__elevation") >>> np.random.seed(50) >>> noise = np.random.rand(100) >>> mg.at_node["topographic__elevation"] += noise >>> mg.at_node["topographic__elevation"].reshape(mg.shape) array([[0.49460165, 0.2280831 , 0.25547392, 0.39632991, 0.3773151 , 0.99657423, 0.4081972 , 0.77189399, 0.76053669, 0.31000935], [0.3465412 , 0.35176482, 0.14546686, 0.97266468, 0.90917844, 0.5599571 , 0.31359075, 0.88820004, 0.67457307, 0.39108745], [0.50718412, 0.5241035 , 0.92800093, 0.57137307, 0.66833757, 0.05225869, 0.3270573 , 0.05640164, 0.17982769, 0.92593317], [0.93801522, 0.71409271, 0.73268761, 0.46174768, 0.93132927, 0.40642024, 0.68320577, 0.64991587, 0.59876518, 0.22203939], [0.68235717, 0.8780563 , 0.79671726, 0.43200225, 0.91787822, 0.78183368, 0.72575028, 0.12485469, 0.91630845, 0.38771099], [0.29492955, 0.61673141, 0.46784623, 0.25533891, 0.83899589, 0.1786192 , 0.22711417, 0.65987645, 0.47911625, 0.07344734], [0.13896007, 0.11230718, 0.47778497, 0.54029623, 0.95807105, 0.58379231, 0.52666409, 0.92226269, 0.91925702, 0.25200886], [0.68263261, 0.96427612, 0.22696165, 0.7160172 , 0.79776011, 0.9367512 , 0.8537225 , 0.42154581, 0.00543987, 0.03486533], [0.01390537, 0.58890993, 0.3829931 , 0.11481895, 0.86445401, 0.82165703, 0.73749168, 0.84034417, 0.4015291 , 0.74862 ], [0.55962945, 0.61323757, 0.29810165, 0.60237917, 0.42567684, 0.53854438, 0.48672986, 0.49989164, 0.91745948, 0.26287702]]) >>> fr = FlowAccumulator(mg, flow_director="D8") >>> fsc = FastscapeEroder(mg, K_sp=0.01, m_sp=0.5, n_sp=1) >>> for x in range(100): ... fr.run_one_step() ... fsc.run_one_step(dt=10.0) ... mg.at_node["topographic__elevation"][mg.core_nodes] += 0.01 ... >>> channels = np.array(mg.at_node["drainage_area"] > 5, dtype=np.uint8) >>> dd = DrainageDensity(mg, channel__mask=channels) >>> mean_drainage_density = dd.calculate_drainage_density() >>> np.isclose(mean_drainage_density, 0.3831100571) True
Alternatively you can pass a set of coefficients to identify the channel mask. Next shows the same example as above, but with these coefficients provided.
>>> mg = RasterModelGrid((10, 10)) >>> _ = mg.add_zeros("node", "topographic__elevation") >>> np.random.seed(50) >>> noise = np.random.rand(100) >>> mg.at_node["topographic__elevation"] += noise >>> fr = FlowAccumulator(mg, flow_director="D8") >>> fsc = FastscapeEroder(mg, K_sp=0.01, m_sp=0.5, n_sp=1) >>> for x in range(100): ... fr.run_one_step() ... fsc.run_one_step(dt=10.0) ... mg.at_node["topographic__elevation"][mg.core_nodes] += 0.01 ... >>> channels = np.array(mg.at_node["drainage_area"] > 5, dtype=np.uint8) >>> dd = DrainageDensity( ... mg, ... area_coefficient=1.0, ... slope_coefficient=1.0, ... area_exponent=1.0, ... slope_exponent=0.0, ... channelization_threshold=5, ... ) >>> mean_drainage_density = dd.calculate_drainage_density() >>> np.isclose(mean_drainage_density, 0.3831100571) True
References
Required Software Citation(s) Specific to this Component
None Listed
Additional References
Tucker, G., Catani, F., Rinaldo, A., Bras, R. (2001). Statistical analysis of drainage density from digital terrain data. Geomorphology 36(3-4), 187-202. https://dx.doi.org/10.1016/s0169-555x(00)00056-8
Initialize the DrainageDensity component.
- Parameters:
grid (ModelGrid)
channel__mask (Array that holds 1's where) – channels exist and 0’s elsewhere
area_coefficient (coefficient to multiply drainage area by,) – for calculating channelization threshold
slope_coefficient (coefficient to multiply slope by,) – for calculating channelization threshold
area_exponent (exponent to raise drainage area to,) – for calculating channelization threshold
slope_exponent (exponent to raise slope to,) – for calculating channelization threshold
channelization_threshold (threshold value above) – which channels exist
- __init__(grid, channel__mask=None, area_coefficient=None, slope_coefficient=None, area_exponent=None, slope_exponent=None, channelization_threshold=None)[source]¶
Initialize the DrainageDensity component.
- Parameters:
grid (ModelGrid)
channel__mask (Array that holds 1's where) – channels exist and 0’s elsewhere
area_coefficient (coefficient to multiply drainage area by,) – for calculating channelization threshold
slope_coefficient (coefficient to multiply slope by,) – for calculating channelization threshold
area_exponent (exponent to raise drainage area to,) – for calculating channelization threshold
slope_exponent (exponent to raise slope to,) – for calculating channelization threshold
channelization_threshold (threshold value above) – which channels exist
- static __new__(cls, *args, **kwds)¶
- calculate_drainage_density()[source]¶
Calculate drainage density.
If the channel mask is defined based on slope and area coefficients, it will be update based on the current drainage area and slope fields.
- Returns:
landscape_drainage_density – Drainage density over the model domain.
- Return type:
float (1/m)
- cite_as = ''¶
- property coords¶
Return the coordinates of nodes on grid attached to the component.
- property current_time¶
Current time.
Some components may keep track of the current time. In this case, the
current_time
attribute is incremented. Otherwise it is set to None.- Return type:
current_time
- definitions = (('area_coefficient', 'Area coefficient to define channels.'), ('area_exponent', 'Area exponent to define channels.'), ('channel__mask', 'Logical map of at which grid nodes channels are present'), ('channelization_threshold', 'Channelization threshold for use with area and slope coefficients and exponents.'), ('flow__link_to_receiver_node', 'ID of link downstream of each node, which carries the discharge'), ('flow__receiver_node', 'Node array of receivers (node that receives flow from current node)'), ('flow__upstream_node_order', 'Node array containing downstream-to-upstream ordered list of node IDs'), ('slope_coefficient', 'Slope coefficient to define channels.'), ('slope_exponent', 'Slope exponent to define channels.'), ('surface_to_channel__minimum_distance', 'Distance from each node to the nearest channel'), ('topographic__steepest_slope', 'The steepest *downhill* slope'))¶
- classmethod from_path(grid, path)¶
Create a component from an input file.
- property grid¶
Return the grid attached to the component.
- initialize_optional_output_fields()¶
Create fields for a component based on its optional field outputs, if declared in _optional_var_names.
This method will create new fields (without overwrite) for any fields output by the component as optional. New fields are initialized to zero. New fields are created as arrays of floats, unless the component also contains the specifying property _var_type.
- initialize_output_fields(values_per_element=None)¶
Create fields for a component based on its input and output var names.
This method will create new fields (without overwrite) for any fields output by, but not supplied to, the component. New fields are initialized to zero. Ignores optional fields. New fields are created as arrays of floats, unless the component specifies the variable type.
- Parameters:
values_per_element (int (optional)) – On occasion, it is necessary to create a field that is of size (n_grid_elements, values_per_element) instead of the default size (n_grid_elements,). Use this keyword argument to acomplish this task.
- input_var_names = ('flow__link_to_receiver_node', 'flow__receiver_node', 'flow__upstream_node_order', 'topographic__steepest_slope')¶
- name = 'DrainageDensity'¶
- optional_var_names = ('area_coefficient', 'area_exponent', 'channel__mask', 'channelization_threshold', 'slope_coefficient', 'slope_exponent')¶
- output_var_names = ('surface_to_channel__minimum_distance',)¶
- property shape¶
Return the grid shape attached to the component, if defined.
- unit_agnostic = True¶
- units = (('area_coefficient', '-'), ('area_exponent', '-'), ('channel__mask', '-'), ('channelization_threshold', '-'), ('flow__link_to_receiver_node', '-'), ('flow__receiver_node', '-'), ('flow__upstream_node_order', '-'), ('slope_coefficient', '-'), ('slope_exponent', '-'), ('surface_to_channel__minimum_distance', 'm'), ('topographic__steepest_slope', '-'))¶
- classmethod var_definition(name)¶
Get a description of a particular field.
- Parameters:
name (str) – A field name.
- Returns:
A description of each field.
- Return type:
tuple of (name, *description*)
- classmethod var_help(name)¶
Print a help message for a particular field.
- Parameters:
name (str) – A field name.
- classmethod var_loc(name)¶
Location where a particular variable is defined.
- var_mapping = (('area_coefficient', 'node'), ('area_exponent', 'node'), ('channel__mask', 'node'), ('channelization_threshold', 'node'), ('flow__link_to_receiver_node', 'node'), ('flow__receiver_node', 'node'), ('flow__upstream_node_order', 'node'), ('slope_coefficient', 'node'), ('slope_exponent', 'node'), ('surface_to_channel__minimum_distance', 'node'), ('topographic__steepest_slope', 'node'))¶