landlab.components.lateral_erosion.lateral_erosion¶
Grid-based simulation of lateral erosion by channels in a drainage network.
ALangston
- class LateralEroder[source]¶
Bases:
Component
Laterally erode neighbor node through fluvial erosion.
Landlab component that finds a neighbor node to laterally erode and calculates lateral erosion. See the publication:
Langston, A.L., Tucker, G.T.: Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape evolution models. Earth Surface Dynamics, 6, 1-27, https://doi.org/10.5194/esurf-6-1-2018
Examples
>>> import numpy as np >>> from landlab import RasterModelGrid >>> from landlab.components import FlowAccumulator, LateralEroder >>> np.random.seed(2010)
Define grid and initial topography
5x4 grid with baselevel in the lower left corner
All other boundary nodes closed
Initial topography is plane tilted up to the upper right with noise
>>> mg = RasterModelGrid((5, 4), xy_spacing=10.0) >>> mg.set_status_at_node_on_edges( ... right=mg.BC_NODE_IS_CLOSED, ... top=mg.BC_NODE_IS_CLOSED, ... left=mg.BC_NODE_IS_CLOSED, ... bottom=mg.BC_NODE_IS_CLOSED, ... ) >>> mg.status_at_node[1] = mg.BC_NODE_IS_FIXED_VALUE >>> rand_noise = np.array( ... [ ... [0.00436992, 0.03225985, 0.03107455, 0.00461312], ... [0.03771756, 0.02491226, 0.09613959, 0.07792969], ... [0.08707156, 0.03080568, 0.01242658, 0.08827382], ... [0.04475065, 0.07391732, 0.08221057, 0.02909259], ... [0.03499337, 0.09423741, 0.01883171, 0.09967794], ... ] ... ).flatten() >>> mg.at_node["topographic__elevation"] = ( ... mg.node_y / 10.0 + mg.node_x / 10.0 + rand_noise ... ) >>> U = 0.001 >>> dt = 100
Instantiate flow accumulation and lateral eroder and run each for one step
>>> fa = FlowAccumulator( ... mg, ... surface="topographic__elevation", ... flow_director="FlowDirectorD8", ... runoff_rate=None, ... depression_finder=None, ... ) >>> latero = LateralEroder(mg, latero_mech="UC", Kv=0.001, Kl_ratio=1.5)
Run one step of flow accumulation and lateral erosion to get the dzlat array needed for the next part of the test.
>>> fa.run_one_step() >>> mg, dzlat = latero.run_one_step(dt)
Evolve the landscape until the first occurence of lateral erosion. Save arrays volume of lateral erosion and topographic elevation before and after the first occurence of lateral erosion
>>> while min(dzlat) == 0.0: ... oldlatvol = mg.at_node["volume__lateral_erosion"].copy() ... oldelev = mg.at_node["topographic__elevation"].copy() ... fa.run_one_step() ... mg, dzlat = latero.run_one_step(dt) ... newlatvol = mg.at_node["volume__lateral_erosion"] ... newelev = mg.at_node["topographic__elevation"] ... mg.at_node["topographic__elevation"][mg.core_nodes] += U * dt ...
Before lateral erosion occurs, volume__lateral_erosion has values at nodes 6 and 10.
>>> np.around(oldlatvol, decimals=0) array([ 0., 0., 0., 0., 0., 0., 79., 0., 0., 0., 24., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
After lateral erosion occurs at node 6, volume__lateral_erosion is reset to 0
>>> np.around(newlatvol, decimals=0) array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 24., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
After lateral erosion at node 6, elevation at node 6 is reduced by -1.41 (the elevation change stored in dzlat[6]). It is also provided as the at-node grid field lateral_erosion__depth_increment.
>>> np.around(oldelev, decimals=2) array([0. , 1.03, 2.03, 3. , 1.04, 1.77, 2.45, 4.08, 2.09, 2.65, 3.18, 5.09, 3.04, 3.65, 4.07, 6.03, 4.03, 5.09, 6.02, 7.1 ])
>>> np.around(newelev, decimals=2) array([0. , 1.03, 2.03, 3. , 1.04, 1.77, 1.03, 4.08, 2.09, 2.65, 3.18, 5.09, 3.04, 3.65, 4.07, 6.03, 4.03, 5.09, 6.02, 7.1 ])
>>> np.around(dzlat, decimals=2) array([ 0. , 0. , 0. , 0. , 0. , 0. , -1.41, 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ])
References
Required Software Citation(s) Specific to this Component
Langston, A., Tucker, G. (2018). Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape evolution models. Earth Surface Dynamics 6(1), 1–27. https://dx.doi.org/10.5194/esurf-6-1-2018
Additional References
None Listed
- Parameters:
grid (ModelGrid) – A Landlab square cell raster grid object
latero_mech (string, optional (defaults to UC)) – Lateral erosion algorithm, choices are “UC” for undercutting-slump model and “TB” for total block erosion
alph (float, optional (defaults to 0.8)) – Parameter describing potential for deposition, dimensionless
Kv (float, node array, or field name) – Bedrock erodibility in vertical direction, 1/years
Kl_ratio (float, optional (defaults to 1.0)) – Ratio of lateral to vertical bedrock erodibility, dimensionless
solver (string) –
- Solver options:
’basic’ (default): explicit forward-time extrapolation. Simple but will become unstable if time step is too large or if bedrock erodibility is vry high.
’adaptive’: subdivides global time step as needed to prevent slopes from reversing.
inlet_node (integer, optional) – Node location of inlet (source of water and sediment)
inlet_area (float, optional) – Drainage area at inlet node, must be specified if inlet node is “on”, m^2
qsinlet (float, optional) – Sediment flux supplied at inlet, optional. m3/year
flow_accumulator (Instantiated Landlab FlowAccumulator, optional) – When solver is set to “adaptive”, then a valid Landlab FlowAccumulator must be passed. It will be run within sub-timesteps in order to update the flow directions and drainage area.
- __init__(grid, latero_mech='UC', alph=0.8, Kv=0.001, Kl_ratio=1.0, solver='basic', inlet_on=False, inlet_node=None, inlet_area=None, qsinlet=0.0, flow_accumulator=None)[source]¶
- Parameters:
grid (ModelGrid) – A Landlab square cell raster grid object
latero_mech (string, optional (defaults to UC)) – Lateral erosion algorithm, choices are “UC” for undercutting-slump model and “TB” for total block erosion
alph (float, optional (defaults to 0.8)) – Parameter describing potential for deposition, dimensionless
Kv (float, node array, or field name) – Bedrock erodibility in vertical direction, 1/years
Kl_ratio (float, optional (defaults to 1.0)) – Ratio of lateral to vertical bedrock erodibility, dimensionless
solver (string) –
- Solver options:
’basic’ (default): explicit forward-time extrapolation. Simple but will become unstable if time step is too large or if bedrock erodibility is vry high.
’adaptive’: subdivides global time step as needed to prevent slopes from reversing.
inlet_node (integer, optional) – Node location of inlet (source of water and sediment)
inlet_area (float, optional) – Drainage area at inlet node, must be specified if inlet node is “on”, m^2
qsinlet (float, optional) – Sediment flux supplied at inlet, optional. m3/year
flow_accumulator (Instantiated Landlab FlowAccumulator, optional) – When solver is set to “adaptive”, then a valid Landlab FlowAccumulator must be passed. It will be run within sub-timesteps in order to update the flow directions and drainage area.
- static __new__(cls, *args, **kwds)¶
- cite_as = '\n @article{langston2018developing,\n author = {Langston, A. L. and Tucker, G. E.},\n title = {{Developing and exploring a theory for the lateral erosion of\n bedrock channels for use in landscape evolution models}},\n doi = {10.5194/esurf-6-1-2018},\n pages = {1---27},\n number = {1},\n volume = {6},\n journal = {Earth Surface Dynamics},\n year = {2018}\n }\n '¶
- property coords¶
Return the coordinates of nodes on grid attached to the component.
- property current_time¶
Current time.
Some components may keep track of the current time. In this case, the
current_time
attribute is incremented. Otherwise it is set to None.- Return type:
current_time
- definitions = (('drainage_area', "Upstream accumulated surface area contributing to the node's discharge"), ('flow__receiver_node', 'Node array of receivers (node that receives flow from current node)'), ('flow__upstream_node_order', 'Node array containing downstream-to-upstream ordered list of node IDs'), ('lateral_erosion__depth_increment', 'Change in elevation at each node from lateral erosion during time step'), ('sediment__influx', 'Sediment flux (volume per unit time of sediment entering each node)'), ('topographic__elevation', 'Land surface topographic elevation'), ('topographic__steepest_slope', 'The steepest *downhill* slope'), ('volume__lateral_erosion', 'Array tracking volume eroded at each node from lateral erosion'))¶
- classmethod from_path(grid, path)¶
Create a component from an input file.
- property grid¶
Return the grid attached to the component.
- initialize_optional_output_fields()¶
Create fields for a component based on its optional field outputs, if declared in _optional_var_names.
This method will create new fields (without overwrite) for any fields output by the component as optional. New fields are initialized to zero. New fields are created as arrays of floats, unless the component also contains the specifying property _var_type.
- initialize_output_fields(values_per_element=None)¶
Create fields for a component based on its input and output var names.
This method will create new fields (without overwrite) for any fields output by, but not supplied to, the component. New fields are initialized to zero. Ignores optional fields. New fields are created as arrays of floats, unless the component specifies the variable type.
- Parameters:
values_per_element (int (optional)) – On occasion, it is necessary to create a field that is of size (n_grid_elements, values_per_element) instead of the default size (n_grid_elements,). Use this keyword argument to acomplish this task.
- input_var_names = ('drainage_area', 'flow__receiver_node', 'flow__upstream_node_order', 'topographic__elevation', 'topographic__steepest_slope')¶
- name = 'LateralEroder'¶
- optional_var_names = ()¶
- output_var_names = ('lateral_erosion__depth_increment', 'sediment__influx', 'topographic__elevation', 'volume__lateral_erosion')¶
- run_one_step_adaptive(dt=1.0)[source]¶
Run time step with adaptive time stepping to prevent slope flattening.
- run_one_step_basic(dt=1.0)[source]¶
Calculate vertical and lateral erosion for a time period ‘dt’.
- Parameters:
dt (float) – Model timestep [T]
- property shape¶
Return the grid shape attached to the component, if defined.
- unit_agnostic = False¶
- units = (('drainage_area', 'm**2'), ('flow__receiver_node', '-'), ('flow__upstream_node_order', '-'), ('lateral_erosion__depth_increment', 'm'), ('sediment__influx', 'm3/y'), ('topographic__elevation', 'm'), ('topographic__steepest_slope', '-'), ('volume__lateral_erosion', 'm3'))¶
- classmethod var_definition(name)¶
Get a description of a particular field.
- Parameters:
name (str) – A field name.
- Returns:
A description of each field.
- Return type:
tuple of (name, *description*)
- classmethod var_help(name)¶
Print a help message for a particular field.
- Parameters:
name (str) – A field name.
- classmethod var_loc(name)¶
Location where a particular variable is defined.
- var_mapping = (('drainage_area', 'node'), ('flow__receiver_node', 'node'), ('flow__upstream_node_order', 'node'), ('lateral_erosion__depth_increment', 'node'), ('sediment__influx', 'node'), ('topographic__elevation', 'node'), ('topographic__steepest_slope', 'node'), ('volume__lateral_erosion', 'node'))¶