landlab.graph.structured_quad.dual_structured_quad¶
- class DualRectilinearGraph[source]¶
Bases:
DualGraph
,RectilinearGraph
Create a dual graph for a rectilinear grid.
Examples
>>> from landlab.graph import DualRectilinearGraph >>> graph = DualRectilinearGraph(([0, 1, 3], [0, 5, 15, 30])) >>> graph.x_of_corner.reshape((2, 3)) array([[ 2.5, 10. , 22.5], [ 2.5, 10. , 22.5]]) >>> graph.y_of_corner.reshape((2, 3)) array([[0.5, 0.5, 0.5], [2. , 2. , 2. ]]) >>> graph.number_of_cells == 2 True >>> graph.faces_at_cell array([[3, 5, 2, 0], [4, 6, 3, 1]])
- __new__(**kwargs)¶
- property adjacent_corners_at_corner¶
Get adjacent corners.
See also
- property adjacent_faces_at_face¶
- property adjacent_links_at_link¶
- property adjacent_nodes_at_node¶
Get adjacent nodes.
Examples
>>> from landlab.graph import Graph
First, a simple example with no diagonals.
>>> node_x, node_y = [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links, sort=True) >>> graph.adjacent_nodes_at_node array([[ 1, 3, -1, -1], [ 2, 4, 0, -1], [ 5, 1, -1, -1], [ 4, 6, 0, -1], [ 5, 7, 3, 1], [ 8, 4, 2, -1], [ 7, 3, -1, -1], [ 8, 6, 4, -1], [ 7, 5, -1, -1]])
Next, we add the diagonal from node 0 to node 4.
>>> node_x, node_y = [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... (0, 4), ... ) >>> graph = Graph((node_y, node_x), links=links, sort=True) >>> graph.adjacent_nodes_at_node array([[ 1, 4, 3, -1, -1], [ 2, 4, 0, -1, -1], [ 5, 1, -1, -1, -1], [ 4, 6, 0, -1, -1], [ 5, 7, 3, 0, 1], [ 8, 4, 2, -1, -1], [ 7, 3, -1, -1, -1], [ 8, 6, 4, -1, -1], [ 7, 5, -1, -1, -1]])
- property angle_of_face¶
Get the angle of each face.
See also
- property angle_of_link¶
Get the angle of each link.
Examples
>>> import numpy as np >>> from landlab.graph import Graph
>>> node_x, node_y = ([0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1]) >>> links = ((0, 1), (1, 2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5)) >>> graph = Graph((node_y, node_x), links=links) >>> graph.angle_of_link * 180.0 / np.pi array([ 0., 0., 90., 90., 90., 0., 0.])
- property area_of_cell¶
Get the area of each cell.
See also
- property area_of_patch¶
Get the area of each patch.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches) >>> graph.area_of_patch array([1., 1.])
- property cell_at_node¶
- property cells_at_corner¶
- property cells_at_face¶
- property corner_at_face_head¶
Get corners at face head.
See also
- property corner_at_face_tail¶
Get corners at face tail.
See also
- property corner_at_patch¶
- property corner_nodes¶
- property corner_x¶
- property corner_y¶
- property corners_at_bottom_edge¶
- property corners_at_cell¶
Get the corners that define a cell.
See also
- property corners_at_face¶
Get corners at either end of faces.
See also
- property corners_at_left_edge¶
- property corners_at_link¶
- property corners_at_nodes_of_grid¶
Nodes at nodes of grid.
See also
- property corners_at_right_edge¶
- property corners_at_top_edge¶
- property ds¶
- property dual¶
- property face_at_link¶
- property face_dirs_at_corner¶
- property faces_at_cell¶
Get the faces that define a cell.
See also
- property faces_at_corner¶
- freeze()¶
Freeze the graph by making arrays read-only.
- classmethod from_dict(meta)¶
- classmethod from_netcdf(fname)¶
- property frozen¶
- property horizontal_faces¶
- property horizontal_links¶
- property length_of_face¶
Get the length of faces.
See also
- property length_of_link¶
Get the length of links.
Examples
>>> import numpy as np >>> from landlab.graph import UniformRectilinearGraph
>>> graph = UniformRectilinearGraph((2, 3), spacing=(1, 2)) >>> graph.length_of_link array([2., 2., 1., 1., 1., 2., 2.])
- property link_at_face¶
- property link_dirs_at_node¶
Return link directions into each node.
A value of 1 indicates a link points toward a given node, while a value of -1 indicates a link points away from a node.
- Returns:
Link directions relative to the nodes of a grid. The shape of the matrix will be number of nodes by the maximum number of links per node. A zero indicates no link at this position.
- Return type:
(n_nodes, max_links_per_node) ndarray of int
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.link_dirs_at_node array([[-1, -1, 0, 0], [-1, -1, 1, 0], [-1, 1, 0, 0], [-1, -1, 1, 0], [-1, -1, 1, 1], [-1, 1, 1, 0], [-1, 1, 0, 0], [-1, 1, 1, 0], [ 1, 1, 0, 0]], dtype=int8)
- property links_at_node¶
Get links touching a node.
Examples
>>> from landlab.graph import Graph >>> node_x = [0, 1, 2, 0, 1, 2, 0, 1, 2] >>> node_y = [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.links_at_node array([[ 0, 2, -1, -1], [ 1, 3, 0, -1], [ 4, 1, -1, -1], [ 5, 7, 2, -1], [ 6, 8, 5, 3], [ 9, 6, 4, -1], [10, 7, -1, -1], [11, 10, 8, -1], [11, 9, -1, -1]])
- property links_at_patch¶
Get the links that define a patch.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches, sort=True) >>> graph.links_at_patch array([[3, 5, 2, 0], [4, 6, 3, 1]])
- classmethod load(source)¶
- merge(dual, node_at_cell=None, nodes_at_face=None)¶
- property midpoint_of_face¶
Get the middle of faces.
See also
- property midpoint_of_link¶
Get the middle of links.
Examples
>>> import numpy as np >>> from landlab.graph import UniformRectilinearGraph
>>> graph = UniformRectilinearGraph((2, 3), spacing=(1, 2)) >>> graph.midpoint_of_link array([[1. , 0. ], [3. , 0. ], [0. , 0.5], [2. , 0.5], [4. , 0.5], [1. , 1. ], [3. , 1. ]])
- property ndim¶
- property node_at_cell¶
- property node_at_link_head¶
Get nodes at link head.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.node_at_link_head array([1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 7, 8])
- property node_at_link_tail¶
Get nodes at link tail.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.node_at_link_tail array([0, 1, 0, 1, 2, 3, 4, 3, 4, 5, 6, 7])
- property node_corners¶
- property node_x¶
- property node_y¶
- property nodes¶
A shaped array of node ids.
- Returns:
Node IDs in an array shaped as number_of_node_rows by number_of_node_columns.
- Return type:
ndarray
- property nodes_at_bottom_edge¶
- property nodes_at_corners_of_grid¶
Nodes at corners of grid.
The nodes at at the corners of the grid. The nodes are returned counterclockwise starting with the upper-right.
Examples
>>> from landlab.graph import UniformRectilinearGraph >>> graph = UniformRectilinearGraph((4, 5)) >>> graph.nodes_at_corners_of_grid (19, 15, 0, 4)
- nodes_at_edge(edge)¶
- property nodes_at_face¶
- property nodes_at_left_edge¶
- property nodes_at_link¶
Get nodes at either end of links.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.nodes_at_link array([[0, 1], [1, 2], [0, 3], [1, 4], [2, 5], [3, 4], [4, 5], [3, 6], [4, 7], [5, 8], [6, 7], [7, 8]])
- property nodes_at_patch¶
Get the nodes that define a patch.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = ([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches, sort=True) >>> graph.nodes_at_patch array([[4, 3, 0, 1], [5, 4, 1, 2]])
- property nodes_at_right_edge¶
- property nodes_at_top_edge¶
- property number_of_cells¶
Get the number of cells.
See also
- property number_of_corner_columns¶
- property number_of_corner_rows¶
- property number_of_corners¶
Get total number of corners.
See also
- property number_of_faces¶
Get corners at face head.
See also
- property number_of_links¶
Get nodes at link head.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.number_of_links == 12 True
- property number_of_node_columns¶
- property number_of_node_rows¶
- property number_of_nodes¶
Get total number of nodes.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> graph.number_of_nodes == 6 True
- property number_of_patches¶
Get the number of patches.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches) >>> graph.number_of_patches == 2 True
- property orientation_of_face¶
Return array of face orientation codes (one value per face).
See also
- property orientation_of_link¶
Return array of link orientation codes (one value per link).
Orientation codes are defined by
LinkOrientation
; 1 = E, 2 = ENE, 4 = NNE, 8 = N, 16 = NNW, 32 = ESE (using powers of 2 allows for future applications that might want additive combinations).
- property parallel_faces_at_face¶
Return similarly oriented faces connected to each face.
See also
- property parallel_links_at_link¶
Return similarly oriented links connected to each link.
Return IDs of links of the same orientation that are connected to each given link’s tail or head node.
The data structure is a numpy array of shape
(n_links, 2)
containing the IDs of the “tail-wise” (connected to tail node) and “head-wise” (connected to head node) links, or -1 if the link is inactive (e.g., on the perimeter) or it has no attached parallel neighbor in the given direction.For instance, consider a 3x4 raster, in which link IDs are as shown:
.-14-.-15-.-16-. | | | | 10 11 12 13 | | | | .--7-.--8-.--9-. | | | | 3 4 5 6 | | | | .--0-.--1-.--2-.
Here’s a mapping of the tail-wise (shown at left or bottom of links) and head-wise (shown at right or top of links) links:
.----.----.----. | | | | | | | | | 4 5 | .---8.7--9.8---. | 11 12 | | | | | | | | | .----.----.----.
So the corresponding data structure would be mostly filled with -1, but for the 7 active links, it would look like:
4: [[-1, 11], 5: [-1, 12], 7: [-1, 8], 8: [ 7, 9], 9: [ 8, -1], 11: [ 4, -1], 12: [ 5, -1]]
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> pll = grid.parallel_links_at_link >>> pll[4:13, :] array([[-1, 11], [-1, 12], [-1, 13], [-1, 8], [ 7, 9], [ 8, -1], [ 3, -1], [ 4, -1], [ 5, -1]])
- property patch_at_corner¶
- property patches_at_link¶
Get the patches on either side of each link.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = ([0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1]) >>> links = ((0, 1), (1, 2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5)) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches) >>> graph.patches_at_link array([[ 0, -1], [ 1, -1], [ 0, -1], [ 0, 1], [ 1, -1], [ 0, -1], [ 1, -1]])
- property patches_at_node¶
Get the patches that touch each node.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = ([0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1]) >>> links = ((0, 1), (1, 2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5)) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches, sort=True) >>> graph.patches_at_node array([[ 0, -1], [ 1, 0], [ 1, -1], [ 0, -1], [ 0, 1], [ 1, -1]])
- property perimeter_corners¶
- property perimeter_nodes¶
Get nodes on the convex hull of a Graph.
Examples
>>> import numpy as np >>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> np.sort(graph.perimeter_nodes) array([0, 2, 3, 5])
- static setup_node_y_and_x(coords)¶
- property shape¶
- sort()¶
Sort graph elements.
- thaw()¶
Thaw the graph by making arrays writable.
- thawed()¶
- to_dict()¶
- to_json()¶
- to_netcdf(*args, **kwds)¶
Write graph contents to a netCDF file.
See xarray.Dataset.to_netcdf for a complete list of parameters. Below are only the most common.
- Parameters:
path (str, optional) – Path to which to save this graph.
mode ({'w', 'a'}, optional) – Write (‘w’) or append (‘a’) mode. If mode=’w’, any existing file at this location will be overwritten.
format ({'NETCDF4', 'NETCDF4_CLASSIC', 'NETCDF3_64BIT', 'NETCDF3_CLASSIC'}, optional) –
File format for the resulting netCDF file:
NETCDF4: Data is stored in an HDF5 file, using netCDF4 API features.
NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only netCDF 3 compatible API features.
NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format, which fully supports 2+ GB files, but is only compatible with clients linked against netCDF version 3.6.0 or later.
NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not handle 2+ GB files very well.
All formats are supported by the netCDF4-python library. scipy.io.netcdf only supports the last two formats.
The default format is NETCDF4 if you are saving a file to disk and have the netCDF4-python library available. Otherwise, xarray falls back to using scipy to write netCDF files and defaults to the NETCDF3_64BIT format (scipy does not support netCDF4).
- property unit_vector_at_corner¶
Get a unit vector for each corner.
See also
- property unit_vector_at_face¶
Make arrays to store the unit vectors associated with each face.
See also
- property unit_vector_at_link¶
Make arrays to store the unit vectors associated with each link.
For each link, the x and y components of the link’s unit vector (that is, the link’s x and y dimensions if it were shrunk to unit length but retained its orientation).
Examples
The example below is a seven-node hexagonal grid, with six nodes around the perimeter and one node (#3) in the interior. There are four horizontal links with unit vector (1,0), and 8 diagonal links with unit vector (+/-0.5, +/-sqrt(3)/2) (note: sqrt(3)/2 ~ 0.866).
>>> from landlab.graph import TriGraph >>> graph = TriGraph((3, 2), spacing=2.0, node_layout="hex", sort=True)
>>> np.round(graph.unit_vector_at_link[:, 0], decimals=5) array([ 1. , -0.5, 0.5, -0.5, 0.5, 1. , 1. , 0.5, -0.5, 0.5, -0.5, 1. ]) >>> np.round(graph.unit_vector_at_link[:, 1], decimals=5) array([0. , 0.86603, 0.86603, 0.86603, 0.86603, 0. , 0. , 0.86603, 0.86603, 0.86603, 0.86603, 0. ])
- property unit_vector_at_node¶
Get a unit vector for each node.
Examples
>>> from landlab.graph import UniformRectilinearGraph >>> graph = UniformRectilinearGraph((3, 3)) >>> graph.unit_vector_at_node array([[1., 1.], [2., 1.], [1., 1.], [1., 2.], [2., 2.], [1., 2.], [1., 1.], [2., 1.], [1., 1.]])
>>> from landlab.graph import TriGraph >>> graph = TriGraph((3, 2), spacing=2.0, node_layout="hex", sort=True)
>>> unit_vector_at_node = np.round(graph.unit_vector_at_node, decimals=5) >>> unit_vector_at_node[:, 0] array([2., 2., 2., 4., 2., 2., 2.]) >>> unit_vector_at_node[:, 1] array([1.73205, 1.73205, 1.73205, 3.4641 , 1.73205, 1.73205, 1.73205])
- property vertical_faces¶
- property vertical_links¶
- property x_of_node¶
Get x-coordinate of node.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> graph.x_of_node array([0., 1., 2., 0., 1., 2.])
- property xy_of_cell¶
Get the centroid of each cell.
See also
- property xy_of_corner¶
Get x and y-coordinates of corner.
See also
- property xy_of_face¶
- property xy_of_link¶
- property xy_of_node¶
Get x and y-coordinates of node.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> graph.xy_of_node[:, 0] array([0., 1., 2., 0., 1., 2.]) >>> graph.xy_of_node[:, 1] array([0., 0., 0., 1., 1., 1.])
- property xy_of_patch¶
Get the centroid of each patch.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches) >>> graph.xy_of_patch array([[0.5, 0.5], [1.5, 0.5]])
- property y_of_node¶
Get y-coordinate of node.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> graph.y_of_node array([0., 0., 0., 1., 1., 1.])
- class DualStructuredQuadGraph[source]¶
Bases:
DualGraph
,StructuredQuadGraph
Dual graph of a structured grid of quadrilaterals.
Examples
>>> from landlab.graph import DualStructuredQuadGraph >>> node_y = [-1, -2, -3, 0, 0, 0, 1, 2, 3] >>> node_x = [0, 1, 2, 0, 2, 3, 0, 1, 2] >>> graph = DualStructuredQuadGraph((node_y, node_x), shape=(3, 3), sort=True) >>> graph.number_of_corners == 4 True >>> graph.y_of_corner array([-1.25, -0.75, 0.75, 1.25]) >>> graph.x_of_corner array([2. , 0.75, 0.75, 2. ]) >>> graph.node_at_cell array([4])
- __new__(**kwargs)¶
- property adjacent_corners_at_corner¶
Get adjacent corners.
See also
- property adjacent_faces_at_face¶
- property adjacent_links_at_link¶
- property adjacent_nodes_at_node¶
Get adjacent nodes.
Examples
>>> from landlab.graph import Graph
First, a simple example with no diagonals.
>>> node_x, node_y = [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links, sort=True) >>> graph.adjacent_nodes_at_node array([[ 1, 3, -1, -1], [ 2, 4, 0, -1], [ 5, 1, -1, -1], [ 4, 6, 0, -1], [ 5, 7, 3, 1], [ 8, 4, 2, -1], [ 7, 3, -1, -1], [ 8, 6, 4, -1], [ 7, 5, -1, -1]])
Next, we add the diagonal from node 0 to node 4.
>>> node_x, node_y = [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... (0, 4), ... ) >>> graph = Graph((node_y, node_x), links=links, sort=True) >>> graph.adjacent_nodes_at_node array([[ 1, 4, 3, -1, -1], [ 2, 4, 0, -1, -1], [ 5, 1, -1, -1, -1], [ 4, 6, 0, -1, -1], [ 5, 7, 3, 0, 1], [ 8, 4, 2, -1, -1], [ 7, 3, -1, -1, -1], [ 8, 6, 4, -1, -1], [ 7, 5, -1, -1, -1]])
- property angle_of_face¶
Get the angle of each face.
See also
- property angle_of_link¶
Get the angle of each link.
Examples
>>> import numpy as np >>> from landlab.graph import Graph
>>> node_x, node_y = ([0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1]) >>> links = ((0, 1), (1, 2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5)) >>> graph = Graph((node_y, node_x), links=links) >>> graph.angle_of_link * 180.0 / np.pi array([ 0., 0., 90., 90., 90., 0., 0.])
- property area_of_cell¶
Get the area of each cell.
See also
- property area_of_patch¶
Get the area of each patch.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches) >>> graph.area_of_patch array([1., 1.])
- property cell_at_node¶
- property cells_at_corner¶
- property cells_at_face¶
- property corner_at_face_head¶
Get corners at face head.
See also
- property corner_at_face_tail¶
Get corners at face tail.
See also
- property corner_at_patch¶
- property corner_nodes¶
- property corner_x¶
- property corner_y¶
- property corners_at_bottom_edge¶
- property corners_at_cell¶
Get the corners that define a cell.
See also
- property corners_at_face¶
Get corners at either end of faces.
See also
- property corners_at_left_edge¶
- property corners_at_link¶
- property corners_at_nodes_of_grid¶
Nodes at nodes of grid.
See also
- property corners_at_right_edge¶
- property corners_at_top_edge¶
- property ds¶
- property dual¶
- property face_at_link¶
- property face_dirs_at_corner¶
- property faces_at_cell¶
Get the faces that define a cell.
See also
- property faces_at_corner¶
- freeze()¶
Freeze the graph by making arrays read-only.
- classmethod from_dict(meta)¶
- classmethod from_netcdf(fname)¶
- property frozen¶
- static get_node_at_cell(shape)[source]¶
Set up an array that gives the node at each cell.
Examples
>>> from landlab.graph.structured_quad import DualStructuredQuadGraph >>> DualStructuredQuadGraph.get_node_at_cell((5, 6)) array([ 7, 8, 9, 10, 13, 14, 15, 16, 19, 20, 21, 22])
- static get_nodes_at_face(shape)[source]¶
Set up an array that gives the nodes on either side of each face.
Examples
>>> from landlab.graph.structured_quad import DualStructuredQuadGraph >>> DualStructuredQuadGraph.get_nodes_at_face((3, 4)) array([[ 1, 5], [ 2, 6], [ 4, 5], [ 5, 6], [ 6, 7], [ 5, 9], [ 6, 10]])
- property horizontal_faces¶
- property horizontal_links¶
- property length_of_face¶
Get the length of faces.
See also
- property length_of_link¶
Get the length of links.
Examples
>>> import numpy as np >>> from landlab.graph import UniformRectilinearGraph
>>> graph = UniformRectilinearGraph((2, 3), spacing=(1, 2)) >>> graph.length_of_link array([2., 2., 1., 1., 1., 2., 2.])
- property link_at_face¶
- property link_dirs_at_node¶
Return link directions into each node.
A value of 1 indicates a link points toward a given node, while a value of -1 indicates a link points away from a node.
- Returns:
Link directions relative to the nodes of a grid. The shape of the matrix will be number of nodes by the maximum number of links per node. A zero indicates no link at this position.
- Return type:
(n_nodes, max_links_per_node) ndarray of int
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.link_dirs_at_node array([[-1, -1, 0, 0], [-1, -1, 1, 0], [-1, 1, 0, 0], [-1, -1, 1, 0], [-1, -1, 1, 1], [-1, 1, 1, 0], [-1, 1, 0, 0], [-1, 1, 1, 0], [ 1, 1, 0, 0]], dtype=int8)
- property links_at_node¶
Get links touching a node.
Examples
>>> from landlab.graph import Graph >>> node_x = [0, 1, 2, 0, 1, 2, 0, 1, 2] >>> node_y = [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.links_at_node array([[ 0, 2, -1, -1], [ 1, 3, 0, -1], [ 4, 1, -1, -1], [ 5, 7, 2, -1], [ 6, 8, 5, 3], [ 9, 6, 4, -1], [10, 7, -1, -1], [11, 10, 8, -1], [11, 9, -1, -1]])
- property links_at_patch¶
Get the links that define a patch.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches, sort=True) >>> graph.links_at_patch array([[3, 5, 2, 0], [4, 6, 3, 1]])
- classmethod load(source)¶
- merge(dual, node_at_cell=None, nodes_at_face=None)¶
- property midpoint_of_face¶
Get the middle of faces.
See also
- property midpoint_of_link¶
Get the middle of links.
Examples
>>> import numpy as np >>> from landlab.graph import UniformRectilinearGraph
>>> graph = UniformRectilinearGraph((2, 3), spacing=(1, 2)) >>> graph.midpoint_of_link array([[1. , 0. ], [3. , 0. ], [0. , 0.5], [2. , 0.5], [4. , 0.5], [1. , 1. ], [3. , 1. ]])
- property ndim¶
- property node_at_cell¶
- property node_at_link_head¶
Get nodes at link head.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.node_at_link_head array([1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 7, 8])
- property node_at_link_tail¶
Get nodes at link tail.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.node_at_link_tail array([0, 1, 0, 1, 2, 3, 4, 3, 4, 5, 6, 7])
- property node_corners¶
- property node_x¶
- property node_y¶
- property nodes¶
A shaped array of node ids.
- Returns:
Node IDs in an array shaped as number_of_node_rows by number_of_node_columns.
- Return type:
ndarray
- property nodes_at_bottom_edge¶
- property nodes_at_corners_of_grid¶
Nodes at corners of grid.
The nodes at at the corners of the grid. The nodes are returned counterclockwise starting with the upper-right.
Examples
>>> from landlab.graph import UniformRectilinearGraph >>> graph = UniformRectilinearGraph((4, 5)) >>> graph.nodes_at_corners_of_grid (19, 15, 0, 4)
- nodes_at_edge(edge)¶
- property nodes_at_face¶
- property nodes_at_left_edge¶
- property nodes_at_link¶
Get nodes at either end of links.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.nodes_at_link array([[0, 1], [1, 2], [0, 3], [1, 4], [2, 5], [3, 4], [4, 5], [3, 6], [4, 7], [5, 8], [6, 7], [7, 8]])
- property nodes_at_patch¶
Get the nodes that define a patch.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = ([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches, sort=True) >>> graph.nodes_at_patch array([[4, 3, 0, 1], [5, 4, 1, 2]])
- property nodes_at_right_edge¶
- property nodes_at_top_edge¶
- property number_of_cells¶
Get the number of cells.
See also
- property number_of_corner_columns¶
- property number_of_corner_rows¶
- property number_of_corners¶
Get total number of corners.
See also
- property number_of_faces¶
Get corners at face head.
See also
- property number_of_links¶
Get nodes at link head.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.number_of_links == 12 True
- property number_of_node_columns¶
- property number_of_node_rows¶
- property number_of_nodes¶
Get total number of nodes.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> graph.number_of_nodes == 6 True
- property number_of_patches¶
Get the number of patches.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches) >>> graph.number_of_patches == 2 True
- property orientation_of_face¶
Return array of face orientation codes (one value per face).
See also
- property orientation_of_link¶
Return array of link orientation codes (one value per link).
Orientation codes are defined by
LinkOrientation
; 1 = E, 2 = ENE, 4 = NNE, 8 = N, 16 = NNW, 32 = ESE (using powers of 2 allows for future applications that might want additive combinations).
- property parallel_faces_at_face¶
Return similarly oriented faces connected to each face.
See also
- property parallel_links_at_link¶
Return similarly oriented links connected to each link.
Return IDs of links of the same orientation that are connected to each given link’s tail or head node.
The data structure is a numpy array of shape
(n_links, 2)
containing the IDs of the “tail-wise” (connected to tail node) and “head-wise” (connected to head node) links, or -1 if the link is inactive (e.g., on the perimeter) or it has no attached parallel neighbor in the given direction.For instance, consider a 3x4 raster, in which link IDs are as shown:
.-14-.-15-.-16-. | | | | 10 11 12 13 | | | | .--7-.--8-.--9-. | | | | 3 4 5 6 | | | | .--0-.--1-.--2-.
Here’s a mapping of the tail-wise (shown at left or bottom of links) and head-wise (shown at right or top of links) links:
.----.----.----. | | | | | | | | | 4 5 | .---8.7--9.8---. | 11 12 | | | | | | | | | .----.----.----.
So the corresponding data structure would be mostly filled with -1, but for the 7 active links, it would look like:
4: [[-1, 11], 5: [-1, 12], 7: [-1, 8], 8: [ 7, 9], 9: [ 8, -1], 11: [ 4, -1], 12: [ 5, -1]]
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> pll = grid.parallel_links_at_link >>> pll[4:13, :] array([[-1, 11], [-1, 12], [-1, 13], [-1, 8], [ 7, 9], [ 8, -1], [ 3, -1], [ 4, -1], [ 5, -1]])
- property patch_at_corner¶
- property patches_at_link¶
Get the patches on either side of each link.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = ([0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1]) >>> links = ((0, 1), (1, 2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5)) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches) >>> graph.patches_at_link array([[ 0, -1], [ 1, -1], [ 0, -1], [ 0, 1], [ 1, -1], [ 0, -1], [ 1, -1]])
- property patches_at_node¶
Get the patches that touch each node.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = ([0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1]) >>> links = ((0, 1), (1, 2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5)) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches, sort=True) >>> graph.patches_at_node array([[ 0, -1], [ 1, 0], [ 1, -1], [ 0, -1], [ 0, 1], [ 1, -1]])
- property perimeter_corners¶
- property perimeter_nodes¶
Get nodes on the convex hull of a Graph.
Examples
>>> import numpy as np >>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> np.sort(graph.perimeter_nodes) array([0, 2, 3, 5])
- static setup_node_y_and_x(yx_at_node, shape=None)¶
- property shape¶
- sort()¶
Sort graph elements.
- thaw()¶
Thaw the graph by making arrays writable.
- thawed()¶
- to_dict()¶
- to_json()¶
- to_netcdf(*args, **kwds)¶
Write graph contents to a netCDF file.
See xarray.Dataset.to_netcdf for a complete list of parameters. Below are only the most common.
- Parameters:
path (str, optional) – Path to which to save this graph.
mode ({'w', 'a'}, optional) – Write (‘w’) or append (‘a’) mode. If mode=’w’, any existing file at this location will be overwritten.
format ({'NETCDF4', 'NETCDF4_CLASSIC', 'NETCDF3_64BIT', 'NETCDF3_CLASSIC'}, optional) –
File format for the resulting netCDF file:
NETCDF4: Data is stored in an HDF5 file, using netCDF4 API features.
NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only netCDF 3 compatible API features.
NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format, which fully supports 2+ GB files, but is only compatible with clients linked against netCDF version 3.6.0 or later.
NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not handle 2+ GB files very well.
All formats are supported by the netCDF4-python library. scipy.io.netcdf only supports the last two formats.
The default format is NETCDF4 if you are saving a file to disk and have the netCDF4-python library available. Otherwise, xarray falls back to using scipy to write netCDF files and defaults to the NETCDF3_64BIT format (scipy does not support netCDF4).
- property unit_vector_at_corner¶
Get a unit vector for each corner.
See also
- property unit_vector_at_face¶
Make arrays to store the unit vectors associated with each face.
See also
- property unit_vector_at_link¶
Make arrays to store the unit vectors associated with each link.
For each link, the x and y components of the link’s unit vector (that is, the link’s x and y dimensions if it were shrunk to unit length but retained its orientation).
Examples
The example below is a seven-node hexagonal grid, with six nodes around the perimeter and one node (#3) in the interior. There are four horizontal links with unit vector (1,0), and 8 diagonal links with unit vector (+/-0.5, +/-sqrt(3)/2) (note: sqrt(3)/2 ~ 0.866).
>>> from landlab.graph import TriGraph >>> graph = TriGraph((3, 2), spacing=2.0, node_layout="hex", sort=True)
>>> np.round(graph.unit_vector_at_link[:, 0], decimals=5) array([ 1. , -0.5, 0.5, -0.5, 0.5, 1. , 1. , 0.5, -0.5, 0.5, -0.5, 1. ]) >>> np.round(graph.unit_vector_at_link[:, 1], decimals=5) array([0. , 0.86603, 0.86603, 0.86603, 0.86603, 0. , 0. , 0.86603, 0.86603, 0.86603, 0.86603, 0. ])
- property unit_vector_at_node¶
Get a unit vector for each node.
Examples
>>> from landlab.graph import UniformRectilinearGraph >>> graph = UniformRectilinearGraph((3, 3)) >>> graph.unit_vector_at_node array([[1., 1.], [2., 1.], [1., 1.], [1., 2.], [2., 2.], [1., 2.], [1., 1.], [2., 1.], [1., 1.]])
>>> from landlab.graph import TriGraph >>> graph = TriGraph((3, 2), spacing=2.0, node_layout="hex", sort=True)
>>> unit_vector_at_node = np.round(graph.unit_vector_at_node, decimals=5) >>> unit_vector_at_node[:, 0] array([2., 2., 2., 4., 2., 2., 2.]) >>> unit_vector_at_node[:, 1] array([1.73205, 1.73205, 1.73205, 3.4641 , 1.73205, 1.73205, 1.73205])
- property vertical_faces¶
- property vertical_links¶
- property x_of_node¶
Get x-coordinate of node.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> graph.x_of_node array([0., 1., 2., 0., 1., 2.])
- property xy_of_cell¶
Get the centroid of each cell.
See also
- property xy_of_corner¶
Get x and y-coordinates of corner.
See also
- property xy_of_face¶
- property xy_of_link¶
- property xy_of_node¶
Get x and y-coordinates of node.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> graph.xy_of_node[:, 0] array([0., 1., 2., 0., 1., 2.]) >>> graph.xy_of_node[:, 1] array([0., 0., 0., 1., 1., 1.])
- property xy_of_patch¶
Get the centroid of each patch.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches) >>> graph.xy_of_patch array([[0.5, 0.5], [1.5, 0.5]])
- property y_of_node¶
Get y-coordinate of node.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> graph.y_of_node array([0., 0., 0., 1., 1., 1.])
- class DualUniformRectilinearGraph[source]¶
Bases:
DualGraph
,UniformRectilinearGraph
Create a dual graph for a uniform rectilinear grid.
Examples
>>> from landlab.graph import DualUniformRectilinearGraph >>> graph = DualUniformRectilinearGraph((4, 3)) >>> graph.x_of_corner.reshape((3, 2)) array([[0.5, 1.5], [0.5, 1.5], [0.5, 1.5]]) >>> graph.y_of_corner.reshape((3, 2)) array([[0.5, 0.5], [1.5, 1.5], [2.5, 2.5]]) >>> graph.number_of_cells == 2 True >>> graph.faces_at_cell array([[2, 3, 1, 0], [5, 6, 4, 3]])
- __new__(**kwargs)¶
- property adjacent_corners_at_corner¶
Get adjacent corners.
See also
- property adjacent_faces_at_face¶
- property adjacent_links_at_link¶
- property adjacent_nodes_at_node¶
Get adjacent nodes.
Examples
>>> from landlab.graph import Graph
First, a simple example with no diagonals.
>>> node_x, node_y = [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links, sort=True) >>> graph.adjacent_nodes_at_node array([[ 1, 3, -1, -1], [ 2, 4, 0, -1], [ 5, 1, -1, -1], [ 4, 6, 0, -1], [ 5, 7, 3, 1], [ 8, 4, 2, -1], [ 7, 3, -1, -1], [ 8, 6, 4, -1], [ 7, 5, -1, -1]])
Next, we add the diagonal from node 0 to node 4.
>>> node_x, node_y = [0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... (0, 4), ... ) >>> graph = Graph((node_y, node_x), links=links, sort=True) >>> graph.adjacent_nodes_at_node array([[ 1, 4, 3, -1, -1], [ 2, 4, 0, -1, -1], [ 5, 1, -1, -1, -1], [ 4, 6, 0, -1, -1], [ 5, 7, 3, 0, 1], [ 8, 4, 2, -1, -1], [ 7, 3, -1, -1, -1], [ 8, 6, 4, -1, -1], [ 7, 5, -1, -1, -1]])
- property angle_of_face¶
Get the angle of each face.
See also
- property angle_of_link¶
Get the angle of each link.
Examples
>>> import numpy as np >>> from landlab.graph import Graph
>>> node_x, node_y = ([0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1]) >>> links = ((0, 1), (1, 2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5)) >>> graph = Graph((node_y, node_x), links=links) >>> graph.angle_of_link * 180.0 / np.pi array([ 0., 0., 90., 90., 90., 0., 0.])
- property area_of_cell¶
Get the area of each cell.
See also
- property area_of_patch¶
Get the area of each patch.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches) >>> graph.area_of_patch array([1., 1.])
- property cell_at_node¶
- property cells_at_corner¶
- property cells_at_face¶
- property corner_at_face_head¶
Get corners at face head.
See also
- property corner_at_face_tail¶
Get corners at face tail.
See also
- property corner_at_patch¶
- property corner_nodes¶
- property corner_x¶
- property corner_y¶
- property corners_at_bottom_edge¶
- property corners_at_cell¶
Get the corners that define a cell.
See also
- property corners_at_face¶
Get corners at either end of faces.
See also
- property corners_at_left_edge¶
- property corners_at_link¶
- property corners_at_nodes_of_grid¶
Nodes at nodes of grid.
See also
- property corners_at_right_edge¶
- property corners_at_top_edge¶
- property ds¶
- property dual¶
- property dx¶
- property dy¶
- property face_at_link¶
- property face_dirs_at_corner¶
- property faces_at_cell¶
Get the faces that define a cell.
See also
- property faces_at_corner¶
- freeze()¶
Freeze the graph by making arrays read-only.
- classmethod from_dict(meta)¶
- classmethod from_netcdf(fname)¶
- property frozen¶
- property horizontal_faces¶
- property horizontal_links¶
- property length_of_face¶
Get the length of faces.
See also
- property length_of_link¶
Get the length of links.
Examples
>>> import numpy as np >>> from landlab.graph import UniformRectilinearGraph
>>> graph = UniformRectilinearGraph((2, 3), spacing=(1, 2)) >>> graph.length_of_link array([2., 2., 1., 1., 1., 2., 2.])
- property link_at_face¶
- property link_dirs_at_node¶
Return link directions into each node.
A value of 1 indicates a link points toward a given node, while a value of -1 indicates a link points away from a node.
- Returns:
Link directions relative to the nodes of a grid. The shape of the matrix will be number of nodes by the maximum number of links per node. A zero indicates no link at this position.
- Return type:
(n_nodes, max_links_per_node) ndarray of int
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.link_dirs_at_node array([[-1, -1, 0, 0], [-1, -1, 1, 0], [-1, 1, 0, 0], [-1, -1, 1, 0], [-1, -1, 1, 1], [-1, 1, 1, 0], [-1, 1, 0, 0], [-1, 1, 1, 0], [ 1, 1, 0, 0]], dtype=int8)
- property links_at_node¶
Get links touching a node.
Examples
>>> from landlab.graph import Graph >>> node_x = [0, 1, 2, 0, 1, 2, 0, 1, 2] >>> node_y = [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.links_at_node array([[ 0, 2, -1, -1], [ 1, 3, 0, -1], [ 4, 1, -1, -1], [ 5, 7, 2, -1], [ 6, 8, 5, 3], [ 9, 6, 4, -1], [10, 7, -1, -1], [11, 10, 8, -1], [11, 9, -1, -1]])
- property links_at_patch¶
Get the links that define a patch.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches, sort=True) >>> graph.links_at_patch array([[3, 5, 2, 0], [4, 6, 3, 1]])
- classmethod load(source)¶
- merge(dual, node_at_cell=None, nodes_at_face=None)¶
- property midpoint_of_face¶
Get the middle of faces.
See also
- property midpoint_of_link¶
Get the middle of links.
Examples
>>> import numpy as np >>> from landlab.graph import UniformRectilinearGraph
>>> graph = UniformRectilinearGraph((2, 3), spacing=(1, 2)) >>> graph.midpoint_of_link array([[1. , 0. ], [3. , 0. ], [0. , 0.5], [2. , 0.5], [4. , 0.5], [1. , 1. ], [3. , 1. ]])
- property ndim¶
- property node_at_cell¶
- property node_at_link_head¶
Get nodes at link head.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.node_at_link_head array([1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 7, 8])
- property node_at_link_tail¶
Get nodes at link tail.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.node_at_link_tail array([0, 1, 0, 1, 2, 3, 4, 3, 4, 5, 6, 7])
- property node_corners¶
- property node_x¶
- property node_y¶
- property nodes¶
A shaped array of node ids.
- Returns:
Node IDs in an array shaped as number_of_node_rows by number_of_node_columns.
- Return type:
ndarray
- property nodes_at_bottom_edge¶
- property nodes_at_corners_of_grid¶
Nodes at corners of grid.
The nodes at at the corners of the grid. The nodes are returned counterclockwise starting with the upper-right.
Examples
>>> from landlab.graph import UniformRectilinearGraph >>> graph = UniformRectilinearGraph((4, 5)) >>> graph.nodes_at_corners_of_grid (19, 15, 0, 4)
- nodes_at_edge(edge)¶
- property nodes_at_face¶
- property nodes_at_left_edge¶
- property nodes_at_link¶
Get nodes at either end of links.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.nodes_at_link array([[0, 1], [1, 2], [0, 3], [1, 4], [2, 5], [3, 4], [4, 5], [3, 6], [4, 7], [5, 8], [6, 7], [7, 8]])
- property nodes_at_patch¶
Get the nodes that define a patch.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = ([0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2]) >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches, sort=True) >>> graph.nodes_at_patch array([[4, 3, 0, 1], [5, 4, 1, 2]])
- property nodes_at_right_edge¶
- property nodes_at_top_edge¶
- property number_of_cells¶
Get the number of cells.
See also
- property number_of_corner_columns¶
- property number_of_corner_rows¶
- property number_of_corners¶
Get total number of corners.
See also
- property number_of_faces¶
Get corners at face head.
See also
- property number_of_links¶
Get nodes at link head.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> graph = Graph((node_y, node_x), links=links) >>> graph.number_of_links == 12 True
- property number_of_node_columns¶
- property number_of_node_rows¶
- property number_of_nodes¶
Get total number of nodes.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> graph.number_of_nodes == 6 True
- property number_of_patches¶
Get the number of patches.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches) >>> graph.number_of_patches == 2 True
- property orientation_of_face¶
Return array of face orientation codes (one value per face).
See also
- property orientation_of_link¶
Return array of link orientation codes (one value per link).
Orientation codes are defined by
LinkOrientation
; 1 = E, 2 = ENE, 4 = NNE, 8 = N, 16 = NNW, 32 = ESE (using powers of 2 allows for future applications that might want additive combinations).
- property origin¶
- property parallel_faces_at_face¶
Return similarly oriented faces connected to each face.
See also
- property parallel_links_at_link¶
Return similarly oriented links connected to each link.
Return IDs of links of the same orientation that are connected to each given link’s tail or head node.
The data structure is a numpy array of shape
(n_links, 2)
containing the IDs of the “tail-wise” (connected to tail node) and “head-wise” (connected to head node) links, or -1 if the link is inactive (e.g., on the perimeter) or it has no attached parallel neighbor in the given direction.For instance, consider a 3x4 raster, in which link IDs are as shown:
.-14-.-15-.-16-. | | | | 10 11 12 13 | | | | .--7-.--8-.--9-. | | | | 3 4 5 6 | | | | .--0-.--1-.--2-.
Here’s a mapping of the tail-wise (shown at left or bottom of links) and head-wise (shown at right or top of links) links:
.----.----.----. | | | | | | | | | 4 5 | .---8.7--9.8---. | 11 12 | | | | | | | | | .----.----.----.
So the corresponding data structure would be mostly filled with -1, but for the 7 active links, it would look like:
4: [[-1, 11], 5: [-1, 12], 7: [-1, 8], 8: [ 7, 9], 9: [ 8, -1], 11: [ 4, -1], 12: [ 5, -1]]
Examples
>>> from landlab import RasterModelGrid >>> grid = RasterModelGrid((3, 4)) >>> pll = grid.parallel_links_at_link >>> pll[4:13, :] array([[-1, 11], [-1, 12], [-1, 13], [-1, 8], [ 7, 9], [ 8, -1], [ 3, -1], [ 4, -1], [ 5, -1]])
- property patch_at_corner¶
- property patches_at_link¶
Get the patches on either side of each link.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = ([0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1]) >>> links = ((0, 1), (1, 2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5)) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches) >>> graph.patches_at_link array([[ 0, -1], [ 1, -1], [ 0, -1], [ 0, 1], [ 1, -1], [ 0, -1], [ 1, -1]])
- property patches_at_node¶
Get the patches that touch each node.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = ([0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1]) >>> links = ((0, 1), (1, 2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5)) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches, sort=True) >>> graph.patches_at_node array([[ 0, -1], [ 1, 0], [ 1, -1], [ 0, -1], [ 0, 1], [ 1, -1]])
- property perimeter_corners¶
- property perimeter_nodes¶
Get nodes on the convex hull of a Graph.
Examples
>>> import numpy as np >>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> np.sort(graph.perimeter_nodes) array([0, 2, 3, 5])
- property shape¶
- sort()¶
Sort graph elements.
- property spacing¶
- thaw()¶
Thaw the graph by making arrays writable.
- thawed()¶
- to_dict()¶
- to_json()¶
- to_netcdf(*args, **kwds)¶
Write graph contents to a netCDF file.
See xarray.Dataset.to_netcdf for a complete list of parameters. Below are only the most common.
- Parameters:
path (str, optional) – Path to which to save this graph.
mode ({'w', 'a'}, optional) – Write (‘w’) or append (‘a’) mode. If mode=’w’, any existing file at this location will be overwritten.
format ({'NETCDF4', 'NETCDF4_CLASSIC', 'NETCDF3_64BIT', 'NETCDF3_CLASSIC'}, optional) –
File format for the resulting netCDF file:
NETCDF4: Data is stored in an HDF5 file, using netCDF4 API features.
NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only netCDF 3 compatible API features.
NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format, which fully supports 2+ GB files, but is only compatible with clients linked against netCDF version 3.6.0 or later.
NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not handle 2+ GB files very well.
All formats are supported by the netCDF4-python library. scipy.io.netcdf only supports the last two formats.
The default format is NETCDF4 if you are saving a file to disk and have the netCDF4-python library available. Otherwise, xarray falls back to using scipy to write netCDF files and defaults to the NETCDF3_64BIT format (scipy does not support netCDF4).
- property unit_vector_at_corner¶
Get a unit vector for each corner.
See also
- property unit_vector_at_face¶
Make arrays to store the unit vectors associated with each face.
See also
- property unit_vector_at_link¶
Make arrays to store the unit vectors associated with each link.
For each link, the x and y components of the link’s unit vector (that is, the link’s x and y dimensions if it were shrunk to unit length but retained its orientation).
Examples
The example below is a seven-node hexagonal grid, with six nodes around the perimeter and one node (#3) in the interior. There are four horizontal links with unit vector (1,0), and 8 diagonal links with unit vector (+/-0.5, +/-sqrt(3)/2) (note: sqrt(3)/2 ~ 0.866).
>>> from landlab.graph import TriGraph >>> graph = TriGraph((3, 2), spacing=2.0, node_layout="hex", sort=True)
>>> np.round(graph.unit_vector_at_link[:, 0], decimals=5) array([ 1. , -0.5, 0.5, -0.5, 0.5, 1. , 1. , 0.5, -0.5, 0.5, -0.5, 1. ]) >>> np.round(graph.unit_vector_at_link[:, 1], decimals=5) array([0. , 0.86603, 0.86603, 0.86603, 0.86603, 0. , 0. , 0.86603, 0.86603, 0.86603, 0.86603, 0. ])
- property unit_vector_at_node¶
Get a unit vector for each node.
Examples
>>> from landlab.graph import UniformRectilinearGraph >>> graph = UniformRectilinearGraph((3, 3)) >>> graph.unit_vector_at_node array([[1., 1.], [2., 1.], [1., 1.], [1., 2.], [2., 2.], [1., 2.], [1., 1.], [2., 1.], [1., 1.]])
>>> from landlab.graph import TriGraph >>> graph = TriGraph((3, 2), spacing=2.0, node_layout="hex", sort=True)
>>> unit_vector_at_node = np.round(graph.unit_vector_at_node, decimals=5) >>> unit_vector_at_node[:, 0] array([2., 2., 2., 4., 2., 2., 2.]) >>> unit_vector_at_node[:, 1] array([1.73205, 1.73205, 1.73205, 3.4641 , 1.73205, 1.73205, 1.73205])
- property vertical_faces¶
- property vertical_links¶
- property x_of_node¶
Get x-coordinate of node.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> graph.x_of_node array([0., 1., 2., 0., 1., 2.])
- property xy_of_cell¶
Get the centroid of each cell.
See also
- property xy_of_corner¶
Get x and y-coordinates of corner.
See also
- property xy_of_face¶
- property xy_of_link¶
- property xy_of_node¶
Get x and y-coordinates of node.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> graph.xy_of_node[:, 0] array([0., 1., 2., 0., 1., 2.]) >>> graph.xy_of_node[:, 1] array([0., 0., 0., 1., 1., 1.])
- property xy_of_patch¶
Get the centroid of each patch.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1, 2, 2, 2] >>> links = ( ... (0, 1), ... (1, 2), ... (0, 3), ... (1, 4), ... (2, 5), ... (3, 4), ... (4, 5), ... (3, 6), ... (4, 7), ... (5, 8), ... (6, 7), ... (7, 8), ... ) >>> patches = ((0, 3, 5, 2), (1, 4, 6, 3)) >>> graph = Graph((node_y, node_x), links=links, patches=patches) >>> graph.xy_of_patch array([[0.5, 0.5], [1.5, 0.5]])
- property y_of_node¶
Get y-coordinate of node.
Examples
>>> from landlab.graph import Graph >>> node_x, node_y = [0, 1, 2, 0, 1, 2], [0, 0, 0, 1, 1, 1] >>> graph = Graph((node_y, node_x)) >>> graph.y_of_node array([0., 0., 0., 1., 1., 1.])