Source code for landlab.components.tectonics.listric_kinematic_extender

#!/usr/bin/env python3
"""
Apply tectonic extension kinematically.

Landlab component that simulates development of an asymmetric rift on a listric
fault plane.

See notebook tutorial for theory and examples.

@author: gtucker
"""

import numpy as np

from landlab import Component
from landlab import HexModelGrid
from landlab import RasterModelGrid
from landlab.components import AdvectionSolverTVD


[docs] def dist_to_line(Px, Py, x0, y0, alpha): """Calculate and return the distance of point(x) (Px, Py) to the line described by x = x0 + t cos alpha, y = y0 + t sin alpha. Parameters ---------- Px : float x-coordinate of point(s) Py : float y-coordinate of point(s) x0 : float x intercept of line y0 : float y intercept of line alpha : float, degrees angle of line, counter-clockwise from positive x-axis Examples -------- >>> np.round(dist_to_line(1, 1, 0, 0, 90), 6) 1.0 >>> np.round(dist_to_line(0, 1, 1, 0, 90), 6) -1.0 >>> np.round(dist_to_line(1, 1, 0, 0, 0), 6) -1.0 >>> np.round(dist_to_line(2.0**0.5, 0, 0, 0, 45), 6) 1.0 >>> np.round(dist_to_line(0, 2.0**0.5, 0, 0, 45), 6) -1.0 """ alpha_r = np.radians(alpha) return np.sin(alpha_r) * (Px - x0) - np.cos(alpha_r) * (Py - y0)
[docs] class ListricKinematicExtender(Component): """Apply tectonic extension kinematically to a raster or hex grid. The caller specifies the strike, dip, and location of the zero-surface fault trace (i.e., where the fault plane would intersect zero elevation), and either the (x, y) components of uniform extension velocity field, or a link-based velocity field. The run_one_step() method calculates advection of an output field called "hangingwall__thickness". The initial hanginwall thickness is defined as the difference between the starting topography field (a required input field) and a listric fault plane that is represented mathematically as an "upside-down" saturating exponential function that asymptotes to a caller-specified detachment depth, representing a decollement. Examples -------- >>> from landlab import RasterModelGrid >>> from landlab.components import ListricKinematicExtender >>> grid = RasterModelGrid((3, 130), xy_spacing=10.0) >>> topo = grid.add_zeros("topographic__elevation", at="node") >>> lke = ListricKinematicExtender(grid, fault_x0=100.0, fault_strike=90.0) >>> for _ in range(250): ... lke.run_one_step(dt=2000.0) ... >>> round(grid.at_node["hangingwall__thickness"][240]) 830 """ _name = "ListricKinematicExtender" _time_units = "y" _unit_agnostic = True _info = { "advection__velocity": { "dtype": float, "intent": "in", "optional": True, "units": "m/y", "mapping": "link", "doc": "Link-parallel advection velocity magnitude", }, "fault_plane__elevation": { "dtype": "float", "intent": "out", "optional": False, "units": "m", "mapping": "node", "doc": "Elevation of fault plane", }, "hangingwall__thickness": { "dtype": "float", "intent": "out", "optional": False, "units": "m", "mapping": "node", "doc": "Thickness of material in hangingwall block", }, "topographic__elevation": { "dtype": "float", "intent": "inout", "optional": False, "units": "m", "mapping": "node", "doc": "Land surface topographic elevation", }, }
[docs] def __init__( self, grid, extension_rate_x=0.001, extension_rate_y=0.0, fault_dip=60.0, fault_x0=0.0, fault_y0=0.0, fault_strike=45.0, detachment_depth=1.0e4, fields_to_advect=None, advection_direction_is_steady=False, ): """Deform vertically and horizontally to represent tectonic extension. Parameters ---------- grid: RasterModelGrid A landlab grid. extension_rate_x: float, optional Rate of x-directed horizontal motion of hangingwall relative to footwall (m / y), default 0.001 m/y. extension_rate_y: float, optional Rate of y-directed horizontal motion of hangingwall relative to footwall (m / y), default 0. fault_x0: float, optional x intercept of zero-surface fault trace, m (default 0). fault_y0: float, optional y intercept of zero-surface fault trace, m (default 0). fault_strike: float, optional Strike of zero-surface fault trace, degrees (default 45). detachment_depth: float, optional Depth to horizontal detachment (m), default 10 km. fields_to_advect: list of str, optional List of names of fields, in addition to 'hangingwall__thickness' advection_direction_is_steady : bool (default False) Indicates whether the directions of advection are expected to remain steady throughout a run. If True, some computation time is saved by calculating upwind links only once. """ if not (isinstance(grid, RasterModelGrid) or isinstance(grid, HexModelGrid)): raise (TypeError, "grid must be a RasterModelGrid or HexModelGrid") fields_to_advect = [] if fields_to_advect is None else fields_to_advect super().__init__(grid) self.initialize_output_fields() self._elev = grid.at_node["topographic__elevation"] self._fault_plane_elev = grid.at_node["fault_plane__elevation"] self._hw_thick = grid.at_node["hangingwall__thickness"] self.update_fault_plane_elevation_and_hangingwall_thickness( grid, fault_x0, fault_y0, fault_strike, fault_dip, detachment_depth ) self._setup_advection_component( grid, fields_to_advect, extension_rate_x, extension_rate_y, advection_direction_is_steady, )
[docs] def update_fault_plane_elevation_and_hangingwall_thickness( self, grid, fault_x0, fault_y0, fault_strike, fault_dip, detachment_depth ): """Initialize fields fault_plane__elevation and hangingwall__thickness. Calculate and store the fault plane elevation at grid nodes using an exponential function of (signed) distance to fault, with topographic elevation as the minimum. Calculate the thickness of the hangingwall block at grid nodes by subtracting fault plane elevation from topographic elevation. Parameters ---------- fault_x0 : float x-intercept of zero-surface fault trace, m fault_y0 : float y-intercept of zero-surface fault trace, m fault_strike : float strike angle of fault trace, degrees ccw from +x fault_dip : float dip angle of fault at the zero elevation point, degrees detachment_depth : float depth to the point where the detachment is horizontal, m Examples -------- >>> from landlab import RasterModelGrid >>> from landlab.components import ListricKinematicExtender >>> grid = RasterModelGrid((3, 3), xy_spacing=1000.0) >>> _ = grid.add_zeros("topographic__elevation", at="node") >>> extender = ListricKinematicExtender(grid, fault_strike=90.0) >>> round(grid.at_node["fault_plane__elevation"][4]) -1590 >>> round(grid.at_node["hangingwall__thickness"][4]) 1590 """ fault_grad = np.tan(np.deg2rad(fault_dip)) dist_to_fault = dist_to_line( grid.x_of_node, grid.y_of_node, fault_x0, fault_y0, fault_strike ) self._fault_plane_elev[:] = np.minimum( -detachment_depth * (1.0 - np.exp(-dist_to_fault * fault_grad / detachment_depth)), self._elev, ) self._hw_thick[:] = self._elev - self._fault_plane_elev
def _setup_advection_component( self, grid, fields_to_advect, extension_rate_x, extension_rate_y, advection_direction_is_steady, ): """Instantiate and initialize AdvectionSolverTVD. If the link field advection__velocity already exists and contains non-zero values, these values are used for the advection field. Otherwise, the field is created (if needed) and initialized by mapping the vector components extension_rate_x and extension_rate_y onto the grid links. fields_to_advect : list List of names of fields to advect. Can be an empty list. "hangingwall__thickness" will be added to the list if it is not already there. extension_rate_x: float Rate of x-directed horizontal motion of hangingwall relative to footwall (m / y). extension_rate_y: float Rate of y-directed horizontal motion of hangingwall relative to footwall (m / y). advection_direction_is_steady : bool Indicates whether the directions of advection are expected to remain steady throughout a run. If True, some computation time is saved by calculating upwind links only once. """ if "hangingwall__thickness" not in fields_to_advect: fields_to_advect.append("hangingwall__thickness") if "advection__velocity" not in grid.at_link.keys(): grid.add_zeros("advection__velocity", at="link") self._advec_velocity = grid.at_link["advection__velocity"] if np.amax(np.abs(self._advec_velocity)) == 0.0: # if no nonzero values grid.map_vectors_to_links( extension_rate_x, extension_rate_y, out=self._advec_velocity ) self.advector = AdvectionSolverTVD( grid, fields_to_advect=fields_to_advect, advection_direction_is_steady=advection_direction_is_steady, )
[docs] def run_one_step(self, dt): """Apply extensional motion to grid for one time step. Parameters ---------- dt : float Time-step duration, y """ self.advector.run_one_step(dt) self._elev[self.grid.core_nodes] = ( self._fault_plane_elev[self.grid.core_nodes] + self._hw_thick[self.grid.core_nodes] )