Source code for landlab.grid.raster_funcs

import numpy as np

from ..core.utils import make_optional_arg_into_id_array


def _swap(a, b):
    return (b, a)


def _iround(x):
    return int(round(x))


[docs] def neighbor_node_at_cell(grid, inds, *args): """node_id_of_cell_neighbor(grid, neighbor_ids [, cell_ids]) Return an array of the node ids for neighbors of *cell_id* cells. *neighbor_ids* is an index into the neighbors of a cell as measured clockwise starting from the south. If *cell_ids* is not given, return neighbors for all cells in the grid. Parameters ---------- grid : RasterModelGrid Input grid. neighbor_ids : array_like IDs of the neighbor nodes. cell_ids : array_like, optional IDs of cell about which to get neighbors. Returns ------- ndarray Node IDs for given neighbors of cells. Examples -------- >>> from landlab import RasterModelGrid >>> from landlab.grid.raster_funcs import neighbor_node_at_cell >>> grid = RasterModelGrid((4, 5), xy_spacing=1.0) >>> neighbor_node_at_cell(grid, 0, 0) array([1]) Get the lower and the the upper neighbors for all the cells. >>> neighbor_node_at_cell(grid, 0) array([1, 2, 3, 6, 7, 8]) >>> neighbor_node_at_cell(grid, 2) array([11, 12, 13, 16, 17, 18]) As an alternative to the above, use fancy-indexing to get both sets of neighbors with one call. >>> neighbor_node_at_cell(grid, np.array([0, 2]), [1, 4]) array([[ 2, 12], [ 7, 17]]) """ cell_ids = make_optional_arg_into_id_array(grid.number_of_cells, *args) node_ids = grid.node_at_cell[cell_ids] neighbors = grid.active_adjacent_nodes_at_node[node_ids] if not isinstance(inds, np.ndarray): inds = np.array(inds) # return neighbors[range(len(cell_ids)), 3 - inds] return np.take(np.take(neighbors, range(len(cell_ids)), axis=0), 3 - inds, axis=1)
[docs] def calculate_slope_aspect_bfp(xs, ys, zs): """Calculate slope and aspect. .. codeauthor:: Katy Barnhart <katherine.barnhart@colorado.edu> Fits a plane to the given N points with given *xs*, *ys*, and *zs* values using single value decomposition. Returns a tuple of (*slope*, *aspect*) based on the normal vector to the best fit plane. .. note:: This function does not check if the points fall on a line, rather than a plane. """ if not len(xs) == len(ys) == len(zs): raise ValueError("array must be the same length") # step 1: subtract the centroid from the points # step 2: create a 3XN matrix of the points for SVD # in python, the unit normal to the best fit plane is # given by the third column of the U matrix. mat = np.vstack((xs - np.mean(xs), ys - np.mean(ys), zs - np.mean(zs))) U, _, _ = np.linalg.svd(mat) normal = U[:, 2] # step 3: calculate the aspect asp = 90.0 - np.degrees(np.arctan2(normal[1], normal[0])) asp = asp % 360.0 # step 4: calculate the slope slp = 90.0 - np.degrees(np.arcsin(normal[2])) return slp, asp
[docs] def find_nearest_node(rmg, coords, mode="raise"): """Find the node nearest a point. Find the index to the node nearest the given x, y coordinates. Coordinates are provided as numpy arrays in the *coords* tuple. *coords* is tuple of coordinates, one for each dimension. The *mode* keyword to indicate what to do if a point is outside of the grid. Valid choices are the same as that used with the numpy function `ravel_multi_index`. A point is considered to be outside of the grid if it is outside the perimeter of the grid by one half of the grid spacing. Parameters ---------- rmg : RasterModelGrid The source grid. coords : tuple Coordinates of point as (x, y) mode : {'raise', 'wrap', 'clip'}, optional Action to take if a point is outside of the grid. Returns ------- array_like : Indices of the nodes nearest the given coordinates. Examples -------- Create a grid of 4 by 5 nodes with unit spacing. >>> import landlab >>> from landlab.grid.raster_funcs import find_nearest_node >>> rmg = landlab.RasterModelGrid((4, 5)) The points can be either a tuple of scalars or of arrays. >>> find_nearest_node(rmg, (0.2, 0.6)) 5 >>> find_nearest_node(rmg, (np.array([1.6, 3.6]), np.array([2.3, 0.7]))) array([12, 9]) The *mode* keyword indicates what to do if a point is outside of the grid. >>> find_nearest_node(rmg, (-0.6, 0.6), mode="raise") Traceback (most recent call last): ... ValueError: invalid entry in coordinates array >>> find_nearest_node(rmg, (-0.6, 0.6), mode="clip") 5 >>> find_nearest_node(rmg, (-0.6, 0.6), mode="wrap") 9 """ if isinstance(coords[0], np.ndarray): return _find_nearest_node_ndarray(rmg, coords, mode=mode) else: return find_nearest_node( rmg, (np.array(coords[0]), np.array(coords[1])), mode=mode )
def _find_nearest_node_ndarray(rmg, coords, mode="raise"): """Find the node nearest to a point. Parameters ---------- rmg : RasterModelGrid A RasterModelGrid. coords : tuple of float Coordinates of test points as *x*, then *y*. mode : {'raise', 'wrap', 'clip'}, optional What to do with out-of-bounds indices (as with numpy.ravel_multi_index). Returns ------- ndarray Nodes that are closest to the points. Examples -------- >>> from landlab.grid.raster_funcs import _find_nearest_node_ndarray >>> from landlab import RasterModelGrid >>> import numpy as np >>> grid = RasterModelGrid((4, 5)) >>> _find_nearest_node_ndarray(grid, (0.25, 1.25)) 5 >>> _find_nearest_node_ndarray(grid, (0.75, 2.25)) 11 >>> grid = RasterModelGrid((4, 5), xy_spacing=(3, 4)) >>> _find_nearest_node_ndarray(grid, (3.1, 4.1)) 6 """ column_indices = np.int_(np.around((coords[0] - rmg.node_x[0]) / rmg.dx)) row_indices = np.int_(np.around((coords[1] - rmg.node_y[0]) / rmg.dy)) return rmg.grid_coords_to_node_id(row_indices, column_indices, mode=mode) def _value_is_in_bounds(value, bounds): """Check if a value is within bounds. Parameters ---------- value : float or ndarray The test value. bounds : (lower, upper) The lower and upper bounds. Returns ------- bool ``True`` if the value is within the bounds. Otherwise, ``False``. Examples -------- >>> from landlab.grid.raster_funcs import _value_is_in_bounds >>> import numpy as np >>> _value_is_in_bounds(0.5, (0, 1)) True >>> _value_is_in_bounds(1, (0, 1)) False >>> _value_is_in_bounds(0, (0, 1)) True >>> _value_is_in_bounds(np.array((0, 1)), (0, 1)) array([ True, False], dtype=bool) """ dummy = value >= bounds[0] dummy &= value < bounds[1] return dummy def _value_is_within_axis_bounds(rmg, value, axis): """Check if a value is within the bounds of a grid axis. Parameters ---------- rmg : RasterModelGrid A RasterModelGrid. value : float The test value. axis : int The axis. Returns ------- bool ``True`` if the value is within the axis bounds. Otherwise, ``False``. Examples -------- >>> from landlab.grid.raster_funcs import _value_is_within_axis_bounds >>> from landlab import RasterModelGrid >>> rmg = RasterModelGrid((4, 5)) >>> _value_is_within_axis_bounds(rmg, 3.1, 0) False >>> _value_is_within_axis_bounds(rmg, 2.9, 0) True >>> _value_is_within_axis_bounds(rmg, 4.1, 1) False >>> _value_is_within_axis_bounds(rmg, 3.9, 1) True """ axis_coord = rmg.node_axis_coordinates(axis) return _value_is_in_bounds(value, (axis_coord[0], axis_coord[-1]))
[docs] def is_coord_on_grid(rmg, coords, axes=(0, 1)): """Check if coordinates are contained on a grid. Parameters ---------- rmg : RasterModelGrid Source grid. coords : tuple Coordinates of point as (x, y) axes : tuple, optional Check bounds only on a particular axis Examples -------- Create a grid that ranges from x=0 to x=4, and y=0 to y=3. >>> from landlab import RasterModelGrid >>> from landlab.grid.raster_funcs import is_coord_on_grid >>> grid = RasterModelGrid((4, 5)) >>> is_coord_on_grid(grid, (3.999, 2.999)) True Check two points with one call. Numpy broadcasting rules apply for the point coordinates. >>> is_coord_on_grid(grid, ([3.9, 4.1], 2.9)) array([ True, False], dtype=bool) >>> is_coord_on_grid(grid, ([3.9, 4.1], 2.9), axes=(0,)) array([ True, True], dtype=bool) """ coords = np.broadcast_arrays(*coords) is_in_bounds = _value_is_within_axis_bounds(rmg, coords[1 - axes[0]], axes[0]) for axis in axes[1:]: is_in_bounds &= _value_is_within_axis_bounds(rmg, coords[1 - axis], axis) return is_in_bounds
[docs] def line_to_grid_coords(c0, r0, c1, r1): """Return integer grid coords forming line segment (c0, r0)->(c1, r1). Parameters ---------- c0, r0 : int column and row coordinates of "starting" endpoint c1, r1 : int column and row coordinates of "ending" endpoint Returns ------- rr, cc : (N,) ndarray of int row and column coordinates of nodes in the line Examples -------- >>> line_to_grid_coords(0, 0, 4, 1) (array([0, 0, 0, 1, 1]), array([0, 1, 2, 3, 4])) Notes ----- Inputs must be grid coordinates rather than actual (x, y) values (unless the grid has unit spacing, in which case they are the same). To convert from real (x, y) to (x_grid, y_grid) use x_grid = x / Dx, where Dx is horizontal grid spacing (and similarly for y). To convert a raster-grid node ID to column and row coords, use numpy.unravel_index(node_id, (num_rows, num_cols)). To convert the returned grid coordinates to node IDs, use the RasterModelGrid method grid_coords_to_node_id(). This function uses an incremental algorithm for line scan-conversion (see, e.g., Foley et al., 1990, chapter 3). For a line with a slope 0 > m > 1, start with the x coordinates for a set of grid columns that span the line. The corresponding y of the first one is just y0. The y for the next one is y0 + m, for the next y0 + 2m, etc. If m > 1, you use y instead of x. In the below, any line segments that "point" toward the lower-left half-grid (i.e., with azimuth between 135o and 315o) have their endpoints flipped first. """ dx = c1 - c0 dy = r1 - r0 # Flip endpoints if needed to have segment point to up/right if (dx + dy) < 0: (c0, c1) = _swap(c0, c1) (r0, r1) = _swap(r0, r1) dx = -dx dy = -dy flip_array = True else: flip_array = False if dx > dy: # more horizontal than vertical npts = _iround(c1 - c0) + 1 cc = np.zeros(npts, dtype=int) rr = np.zeros(npts, dtype=int) cc[:] = np.arange(npts) rr[:] = np.round(r0 + (float(dy) / dx) * cc) cc[:] += _iround(c0) else: npts = _iround(r1 - r0) + 1 cc = np.zeros(npts, dtype=int) rr = np.zeros(npts, dtype=int) rr[:] = np.arange(npts) cc[:] = np.round(c0 + (float(dx) / dy) * rr) rr[:] += _iround(r0) # If endpoints were flipped, here we "un-flip" again if flip_array: rr = np.flipud(rr) cc = np.flipud(cc) return rr, cc