Source code for landlab.grid.voronoi

#! /usr/env/python
"""Python implementation of VoronoiDelaunayGrid, a class used to create and
manage unstructured, irregular grids for 2D numerical models.
"""
import pathlib

import numpy as np

from ..graph import DualVoronoiGraph
from .base import ModelGrid


[docs] def simple_poly_area(x, y): """Calculates and returns the area of a 2-D simple polygon. Input vertices must be in sequence (clockwise or counterclockwise). *x* and *y* are arrays that give the x- and y-axis coordinates of the polygon's vertices. Parameters ---------- x : ndarray x-coordinates of of polygon vertices. y : ndarray y-coordinates of of polygon vertices. Returns ------- out : float Area of the polygon Examples -------- >>> import numpy as np >>> from landlab.grid.voronoi import simple_poly_area >>> x = np.array([3.0, 1.0, 1.0, 3.0]) >>> y = np.array([1.5, 1.5, 0.5, 0.5]) >>> simple_poly_area(x, y) 2.0 If the input coordinate arrays are 2D, calculate the area of each polygon. Note that when used in this mode, all polygons must have the same number of vertices, and polygon vertices are listed column-by-column. >>> x = np.array([[3.0, 1.0, 1.0, 3.0], [-2.0, -2.0, -1.0, -1.0]]).T >>> y = np.array([[1.5, 1.5, 0.5, 0.5], [0.0, 1.0, 2.0, 0.0]]).T >>> simple_poly_area(x, y) array([2. , 1.5]) """ # For short arrays (less than about 100 elements) it seems that the # Python sum is faster than the numpy sum. Likewise for the Python # built-in abs. return 0.5 * abs(sum(x[:-1] * y[1:] - x[1:] * y[:-1]) + x[-1] * y[0] - x[0] * y[-1])
[docs] class VoronoiDelaunayGrid(DualVoronoiGraph, ModelGrid): """This inherited class implements an unstructured grid in which cells are Voronoi polygons and nodes are connected by a Delaunay triangulation. Uses scipy.spatial module to build the triangulation. Create an unstructured grid from points whose coordinates are given by the arrays *x*, *y*. Returns ------- VoronoiDelaunayGrid A newly-created grid. Examples -------- >>> import numpy as np >>> from numpy.random import rand >>> from landlab.grid import VoronoiDelaunayGrid >>> x, y = rand(25), rand(25) >>> vmg = VoronoiDelaunayGrid(x, y) # node_x_coords, node_y_coords >>> vmg.number_of_nodes 25 >>> x = np.array( ... [ ... [0, 0.1, 0.2, 0.3], ... [1, 1.1, 1.2, 1.3], ... [2, 2.1, 2.2, 2.3], ... ] ... ).flatten() >>> y = np.array( ... [ ... [0.0, 1.0, 2.0, 3.0], ... [0.0, 1.0, 2.0, 3.0], ... [0.0, 1.0, 2.0, 3.0], ... ] ... ).flatten() >>> vmg = VoronoiDelaunayGrid(x, y) >>> vmg.node_x array([0. , 1. , 2. , 0.1, 1.1, 2.1, 0.2, 1.2, 2.2, 0.3, 1.3, 2.3]) >>> vmg.node_y array([0., 0., 0., 1., 1., 1., 2., 2., 2., 3., 3., 3.]) >>> vmg.adjacent_nodes_at_node array([[ 1, 3, -1, -1, -1, -1], [ 2, 4, 3, 0, -1, -1], [ 5, 4, 1, -1, -1, -1], [ 4, 6, 0, 1, -1, -1], [ 5, 7, 6, 3, 1, 2], [ 8, 7, 4, 2, -1, -1], [ 7, 9, 3, 4, -1, -1], [ 8, 10, 9, 6, 4, 5], [11, 10, 7, 5, -1, -1], [10, 6, 7, -1, -1, -1], [11, 9, 7, 8, -1, -1], [10, 8, -1, -1, -1, -1]]) """
[docs] def __init__( self, x=None, y=None, reorient_links=True, xy_of_reference=(0.0, 0.0), xy_axis_name=("x", "y"), xy_axis_units="-", ): """Create a Voronoi Delaunay grid from a set of points. Create an unstructured grid from points whose coordinates are given by the arrays *x*, *y*. Parameters ---------- x : array_like x-coordinate of points y : array_like y-coordinate of points reorient_links (optional) : bool whether to point all links to the upper-right quadrant xy_of_reference : tuple, optional Coordinate value in projected space of (0., 0.) Default is (0., 0.) Returns ------- VoronoiDelaunayGrid A newly-created grid. Examples -------- >>> from numpy.random import rand >>> from landlab.grid import VoronoiDelaunayGrid >>> x, y = rand(25), rand(25) >>> vmg = VoronoiDelaunayGrid(x, y) # node_x_coords, node_y_coords >>> vmg.number_of_nodes 25 """ DualVoronoiGraph.__init__(self, (y, x), sort=True) ModelGrid.__init__( self, xy_axis_name=xy_axis_name, xy_axis_units=xy_axis_units, xy_of_reference=xy_of_reference, ) self._node_status = np.full( self.number_of_nodes, self.BC_NODE_IS_CORE, dtype=np.uint8 ) self._node_status[self.perimeter_nodes] = self.BC_NODE_IS_FIXED_VALUE
# DualVoronoiGraph.__init__(self, (y, x), **kwds) # ModelGrid.__init__(self, **kwds)
[docs] @classmethod def from_dict(cls, kwds): args = (kwds.pop("x"), kwds.pop("y")) return cls(*args, **kwds)
[docs] def save(self, path, clobber=False): """Save a grid and fields. This method uses pickle to save a Voronoi grid as a pickle file. At the time of coding, this is the only convenient output format for Voronoi grids, but support for netCDF is likely coming. All fields will be saved, along with the grid. The recommended suffix for the save file is '.grid'. This will be added to your save if you don't include it. This method is equivalent to :py:func:`~landlab.io.native_landlab.save_grid`, and :py:func:`~landlab.io.native_landlab.load_grid` can be used to load these files. Caution: Pickling can be slow, and can produce very large files. Caution 2: Future updates to Landlab could potentially render old saves unloadable. Parameters ---------- path : str Path to output file. clobber : bool (defaults to false) Set to true to allow overwriting Returns ------- str The name of the saved file (with the ".grid" extension). Examples -------- >>> from landlab import VoronoiDelaunayGrid >>> import numpy as np >>> grid = VoronoiDelaunayGrid(np.random.rand(20), np.random.rand(20)) >>> grid.save("mytestsave.grid") # doctest: +SKIP 'mytestsave.grid' :meta landlab: info-grid """ import pickle path = pathlib.Path(path) if path.suffix != ".grid": path = path.with_suffix(path.suffix + ".grid") if path.exists() and not clobber: raise ValueError( f"File exists: {str(path)!r}. " "Either remove this file and try again or set the " "'clobber' keyword to True" ) with open(path, "wb") as fp: pickle.dump(self, fp) return str(path)